Vés al contingut

Fitxer:Delta sigma dithering 1st order err vs frq.svg

El contingut de la pàgina no s'admet en altres llengües.
De la Viquipèdia, l'enciclopèdia lliure

Fitxer original (fitxer SVG, nominalment 754 × 483 píxels, mida del fitxer: 76 Ko)

Descripció a Commons

Resum

Descripció
English: A graph of the quantization noise performance of a 64x oversampled 1-bit delta-sigma vs frequency (up to

1/2 of the 1x sample rate) from simulation. Noise due to 5, 6 & 7 bit ordinary quantization is also shown for comparison.

This file was created by running the scilab script listed below many times (about 20) to average the results.

The lines are least-squares best fit while the lighter "randomness" is the actual data.
Data
Font Treball propi
Autor Darrell.barrell

SCILAB script

//--------------------------------------------------------------------------------------
// Investigate equivalent bit resolution of first-order delta-sigma dithered
// quantized samples for various oversampling amounts using random data, oversampling
// and applying the following delta-sigma dithering:
//
//   out[n] = quantize(in[n]+errsum[n])
//   errsum[n+1] = errsum[n] + in[n] - out[n]
//
// The output is then "perfectly" filtered, decimated back to the original sample rate
// and the standard deviation of the error (difference between input & output) is found.
//
// The number of bits resolution at the original sample rate giving the same error is
// then calculated.
//
// e.g. if we oversample 4 bits by 8 times using delta-sigma dithering and then "perfectly"
// filter the output, what is the equivalent bit resolution at the original sample rate?
//
// Notes:
//   * "perfectly filtering" means using the FFT and zeroing unwanted bins
//
//   * Input data is not quite uniform distribution because of oversampling and then
//     normalizing to ensure no out of range data
//
//   * Calaculation of effective bit resolution assumes evenly distributed input data
//     (which isn't exactly the case as stated in the above note)
//
// This script is public domain
//
// version 1: June 2008, darrell.barrell
//
//--------------------------------------------------------------------------------------
function out = real_fft(x)
// real to complex fft (real length must be divisible by 4)
  out = fft(x(:));
  out = [ out(1); out(2:$/2)*2; out($/2+1)];
endfunction

//--------------------------------------------------------------------------------------
function out = real_ifft(x)
// complex to real fft (real length must be divisible by 4)
  t = [x(1); x(2:$-1)*.5; x($); conj(x($-1:-1:2))*.5];
  out = real(ifft(t));
endfunction

//--------------------------------------------------------------------------------------
function out = clip(x, lower, upper)
// clip "x" to be within bounds "lower" and "upper"
  out = max(min(x, upper), lower);
endfunction

//--------------------------------------------------------------------------------------
function n_bits = equiv_bits(stdev_quan_err)
//
// find the equivalent number of sampling bits resolution that gives a quantizing 
// error std deviation of "stdev_quan_err"
//
// Assume
//    linear quantizing
//    rounding to closest quantized value
//    uniform input distribution
//    full scale conversion (i.e. quantized output is from 0 to 1)
//
// stdev_quan_err = sqrt(1/12) ./ (2.^quan_bits-1);
//
// Note, sqrt(1/12) is the stdev of uniform distribution with
// an output range of 1 unit.
//
  n_bits = log(1 ./ (sqrt(12)*stdev_quan_err) + 1) / log(2);
endfunction

//--------------------------------------------------------------------------------------
function lsq_line_plot(dat, col_rgb)
// plot "dat" and also least-squares best fit line in colour "col_rgb"
  plot(dat, "foreground", col_rgb*.25+.75);
  len = length(dat);
  A = lsq([(1:len)', ones(len, 1)], dat(:));
  plot([1 len], A(2)+A(1)*[1 len], "foreground", col_rgb);
endfunction

//--------------------------------------------------------------------------------------
function frq_err = sum_frq_err_sqr(frq_err, err)
// get the freq error squared of err
  err = real_fft(err);
  frq_err = frq_err + real(err).^2 + imag(err).^2;
endfunction

//--------------------------------------------------------------------------------------

// resample factor
oversample_v = [2 4 8 16 32 64];
oversample_v = 16;
//oversample_v = 8;

// data length
len_d = 2048;

// dithered bit resolutions to test
dith_bits_v = [1 4 8 12];
dith_bits_v = 1;

// ordinary quantized bit resolutions to plot
quan_bits_v = 1:16;

// create some random data
d = rand(len_d, 1);

// maximum oversample
max_over = max(oversample_v);

// use FFT resample
fft_d = real_fft(d);

// pad spectrum with 0
fft_d(length(d)/2*max_over+1) = 0;

// resampled data at maximum resample rate
d_max_resamp = real_ifft(fft_d)*max_over;

// normalize resampled data between 0 & 1
// note that the distribution is no longer uniform
min_r = min(d_max_resamp);
max_r = max(d_max_resamp);
d_max_resamp = (d_max_resamp-min_r)/(max_r-min_r);
d = (d-min_r)/(max_r-min_r);

//printf("resample error=%f\n", sum((d_max_resamp(1:max_over:$)-d).^2));

// do ordinary quantizing to test
quan_err = [];
for n = 2.^quan_bits_v-1
  d_quan = round(d*n)/n;
  quan_err($+1) = stdev(d_quan - d);
end
equiv_bits(quan_err)

scf(1);
title("Quantizing performance of 1st order sigma-delta dithering");
xlabel("Times oversample");
ylabel("Equivalent bit resolution");
xgrid;

// dithered bit resolution
for bits = dith_bits_v

  // number of quantizing levels
  levels = 2^bits-1;
  
  // oversampling
  over = 2;
  
  // std deviation of dithering error after "perfect" resample
  dith_err = [];
  
  for over = oversample_v
    printf("levels=%d, over=%d\n", levels, over);
    
    // decimate resampled data to get resampling that we want
    decimate_stp = max_over/over;
    d_resamp = d_max_resamp(1:decimate_stp:$);
        
    // current error sum
    err = 0;

    // do the dithering to 
    dith = zeros(len_d * over, 1);
    for idx = 1:length(d_resamp)
      // input sample
      in = d_resamp(idx);
      
      // output sample gets first order sigma-delta dithered & rounded
      out = round((in+err)*levels)/levels;
      out = clip(out, 0, 1);
      
      // update error
      err = err + in - out;
      
      // output
      dith(idx) = out;
    end

    // "perfect" filter & decimate using FFT
    dith_fft = real_fft(dith)/over;
    dith_dec = real_ifft(dith_fft(1:len_d/2+1));
    
    // "noise" power due to quantizing errors (in dB) using the
    // standard deviation (which is sqrt(power))
    dith_err($+1) = stdev(d-dith_dec);
  end
  
  dith_equiv_bits = equiv_bits(dith_err);
  plot(dith_equiv_bits);
  plot(dith_equiv_bits, 'x');
  if length(dith_equiv_bits) > 1
    printf("%f ", diff(dith_equiv_bits));
    printf("\n");
  end

end

// initialize frq error sums
if ~ exists("frq_err_dith")
frq_err_dith = 0;
frq_err_qa = 0;
frq_err_qb = 0;
frq_err_qc = 0;
end

//
frq_err_dith = sum_frq_err_sqr(frq_err_dith, d-dith_dec);

// compare with ordinary quantizing at the closest bit depths [-1 0 +1]
t = 2.^round(dith_equiv_bits);
frq_err_qa = sum_frq_err_sqr(frq_err_qa, d-round(d*(t*2-1))/(t*2-1));
frq_err_qb = sum_frq_err_sqr(frq_err_qb, d-round(d*(t-1))/(t-1));
frq_err_qc = sum_frq_err_sqr(frq_err_qc, d-round(d*(t/2-1))/(t/2-1));

scf(2);
clf;
title("Comparison of error vs frequency");
xlabel("Frequency (linear)");
ylabel("Error magnitude (linear)");
lsq_line_plot(sqrt(frq_err_qc), [0 0 1]);
lsq_line_plot(sqrt(frq_err_qb), [0 0 1]);
lsq_line_plot(sqrt(frq_err_qa), [0 0 1]);
lsq_line_plot(sqrt(frq_err_dith),[1 0 0]);

printf("Done\n");

Llicència

Public domain Jo, el titular del copyright d'aquesta obra, l'allibero al domini públic. Això s'aplica a tot el món.
En alguns països això pot no ser legalment possible, en tal cas:
Jo faig concessió a tothom del dret d'usar aquesta obra per a qualsevol propòsit, sense cap condició llevat d'aquelles requerides per la llei.

Llegendes

Afegeix una explicació d'una línia del que representa aquest fitxer

Elements representats en aquest fitxer

representa l'entitat

Historial del fitxer

Cliqueu una data/hora per veure el fitxer tal com era aleshores.

Data/horaMiniaturaDimensionsUsuari/aComentari
actual13:09, 14 juny 2008Miniatura per a la versió del 13:09, 14 juny 2008754 × 483 (76 Ko)Darrell.barrell{{Information |Description=error vs frequency performance (simulation) of 64x oversampling 1-bit sigma-delta quantizer |Source=own work |Date=June 08 |Author=darrell.barrell |Permission=public domain |other_versions= }} [[Category:Digital signal processin
11:05, 14 juny 2008Miniatura per a la versió del 11:05, 14 juny 2008754 × 483 (76 Ko)Darrell.barrell{{Information |Description={{en|1=A graph of the quantization noise performance of a 64x oversampled 1-bit delta-sigma vs frequency (up to 1/2 of the 1x sample rate) from simulation. Noise due to 5, 6 & 7 bit ordinary quantization is also shown for compar

La pàgina següent utilitza aquest fitxer: