Vés al contingut

Fitxer:Learning Curves (Naive Bayes).png

El contingut de la pàgina no s'admet en altres llengües.
De la Viquipèdia, l'enciclopèdia lliure

Learning_Curves_(Naive_Bayes).png (640 × 480 píxels, mida del fitxer: 41 Ko, tipus MIME: image/png)

Descripció a Commons

Resum

Descripció
English: A learning curve shows the validation and training score of an estimator for varying numbers of training samples. It is a tool to find out how much we benefit from adding more training data and whether the estimator suffers more from a variance error or a bias error. If both the validation score and the training score converge to a value that is too low with increasing size of the training set, we will not benefit much from more training data. In the following plot you can see an example: naive Bayes roughly converges to a low score.
Data
Font https://scikit-learn.org/stable/modules/learning_curve.html
Autor scikit-learn developers

Llicència

Copyright © The author

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

  1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
  2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
  3. Neither the name of The author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by The author and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall The author and contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Llegendes

Afegeix una explicació d'una línia del que representa aquest fitxer
Learning curve showing training score and cross validation score

Elements representats en aquest fitxer

representa l'entitat

Historial del fitxer

Cliqueu una data/hora per veure el fitxer tal com era aleshores.

Data/horaMiniaturaDimensionsUsuari/aComentari
actual10:01, 15 feb 2019Miniatura per a la versió del 10:01, 15 feb 2019640 × 480 (41 Ko)Justin OrmontUser created page with UploadWizard

La pàgina següent utilitza aquest fitxer:

Ús global del fitxer

Metadades