Vés al contingut

Fitxer:NZ opinion polls 2011-2014-majorparties.png

El contingut de la pàgina no s'admet en altres llengües.
De la Viquipèdia, l'enciclopèdia lliure

NZ_opinion_polls_2011-2014-majorparties.png (778 × 487 píxels, mida del fitxer: 13 Ko, tipus MIME: image/png)

Descripció a Commons

Resum

Descripció
English: Graph showing support for political parties in New Zealand since the 2011 election, according to various political polls. Data is obtained from the Wikipedia page, Opinion polling for the Next New Zealand general election
Data
Font Treball propi
Autor Mark Payne, Denmark
This file may be updated to reflect new information.
If you wish to use a specific version of the file without it being overwritten, please upload the required version as a separate file.
 
Aquesta PNG imatge rasteritzada ha estat creada amb R.

Figure is produced using the R statistical package, using the following code. It first reads the HTML directly from the website, then parses the data and saves the graph into your working directory. It should be able to be run directly by anyone with R.

rm(list=ls())
library(mgcv)

#==========================================
#Parameters - specified as a list
opts <- list()
opts$major <- list(parties= c("Green","Labour","National","NZ First"),   #use precise names from Table headers
                   ylims = c(0,65),   #Vertical range
                   fname= "NZ_opinion_polls_2011-2014-majorparties.png",
                   dp=0)  #Number of decimal places to round estimates to
opts$minor <- list(parties=c("ACT","Maori","United Future","Mana","Conservative","Internet Mana"),   #please use "Maori" for the Maori party
                   ylims = c(0,6),   #Vertical range
                   fname = "NZ_opinion_polls_2011-2014-minorparties.png",
                   dp=1) #Number of decimal places to round estimates to

#==========================================
#Shouldn't need to edit anything below here
#==========================================

#Load the complete HTML file into memory
html <- readLines(url("http://en.wikipedia.org/wiki/Opinion_polling_for_the_next_New_Zealand_general_election",encoding="UTF-8"))
closeAllConnections()

#Extract the opinion poll data table
tbl.no <- 1
tbl <- html[(grep("<table.*",html)[tbl.no]):(grep("</table.*",html)[tbl.no])]

#Now split it into the rows, based on the <tr> tag
tbl.rows <- list()
open.tr <- grep("<tr",tbl)
close.tr <- grep("</tr",tbl)
for(i in 1:length(open.tr)) tbl.rows[[i]] <- tbl[open.tr[i]:close.tr[i]]

#Extract table headers
hdrs <- grep("<th",tbl,value=TRUE)
hdrs <- hdrs[1:(length(hdrs)/2)]
party.names <- gsub("<.*?>","",hdrs)[-c(1:2)]
party.names <- gsub(" ","_",party.names)  #Replace space with a _
party.names <- gsub("M.{1}ori","Maori",party.names)  #Apologies, but the hard "a" is too hard to handle otherwise
party.cols   <- gsub("^.*bgcolor=\"(.*?)\".*$","\\1",hdrs)[-c(1:2)]
names(party.cols) <- party.names

#Extract data rows
tbl.rows <- tbl.rows[sapply(tbl.rows,function(x) length(grep("<td",x)))>1]

#Now extract the data
survey.dat <- lapply(tbl.rows,function(x) {
  #Start by only considering where we have <td> tags
  td.tags <- x[grep("<td",x)]
  #Polling data appears in columns other than first two
  dat     <- td.tags[-c(1,2)]
  #Now strip the data and covert to numeric format
  dat     <- gsub("<td>|</td>","",dat)
  dat     <- gsub("%","",dat)
  dat     <- gsub("-","0",dat)
  dat     <- gsub("<","",dat)
  dat     <- as.numeric(dat)
  if(length(dat)!=length(party.names)) {
     stop(sprintf("Survey data is not defined properly: %s",td.tags[1]))
  }
  names(dat) <- party.names
  #Getting the date strings is a little harder. Start by tidying up the dates
  date.str <- td.tags[2]                        #Dates are in the second column
  date.str <- gsub("<sup.*</sup>","",date.str)   #Throw out anything between superscript tags, as its an reference to the source
  date.str <- gsub("<td>|</td>","",date.str)  #Throw out any tags
  #Get numeric parts of string
  digits.str <- gsub("[^0123456789]"," ",date.str)
  digits.str <- gsub("^ +","",digits.str)    #Drop leading whitespace
  digits     <- strsplit(digits.str," +")[[1]]
  yrs        <- grep("[0-9]{4}",digits,value=TRUE)
  days       <- digits[!digits%in%yrs]
  #Get months
  month.str <- gsub("[^A-Z,a-z]"," ",date.str)
  month.str <- gsub("^ +","",month.str)        #Drop leading whitespace
  mnths     <- strsplit(month.str," +",month.str)[[1]]
  #Now paste together to make standardised date strings
  days  <- rep(days,length.out=2)
  mnths <- rep(mnths,length.out=2)
  yrs <- rep(yrs,length.out=2)
  dates.std <- paste(days,mnths,yrs)
  #And finally the survey time
  survey.time <- mean(as.POSIXct(strptime(dates.std,format="%d %B %Y")))
  #Get the name of the survey company too
  survey.comp <- td.tags[1]
  survey.comp <- gsub("<sup.*</sup>","",survey.comp)
  survey.comp <- gsub("<td>|</td>","",survey.comp)
  survey.comp <- gsub("<U+2013>","-",survey.comp,fixed=TRUE)
  survey.comp <- gsub("(?U)<.*>","",survey.comp,perl=TRUE)
  survey.comp <- gsub("^ +| +$","",survey.comp)
  survey.comp <- gsub("-+"," ",survey.comp)

  #And now return results
  return(data.frame(Company=survey.comp,Date=survey.time,date.str,t(dat)))
})

#Combine results
surveys <- do.call(rbind,survey.dat)

#==========================================
#Now generate each plot
#==========================================
smoothers  <- list()
for(opt in opts) {

#Restrict data to selected parties
selected.parties <- gsub(" ","_",sort(opt$parties))
selected.cols <- party.cols[selected.parties]
plt.dat   <- surveys[,c("Company","Date",selected.parties)]
plt.dat <- subset(plt.dat,!is.na(surveys$Date))
plt.dat <- plt.dat[order(plt.dat$Date),]
plt.dat$date.num  <- as.double(plt.dat$Date)
plt.dat <- subset(plt.dat,Company!="2008 election result")
plt.dat$Company <- factor(plt.dat$Company)

#Setup plot
ticks <- ISOdate(c(rep(2011,1),rep(2012,2),rep(2013,2),rep(2014,2),2015),c(rep(c(7,1),4)),1)
xlims <- range(c(ISOdate(2011,11,1),ticks))
png(opt$fname,width=778,height=487,pointsize=16)
par(mar=c(5.5,4,1,1))
matplot(plt.dat$date.num,plt.dat[,selected.parties],pch=NA,xlim=xlims,ylab="Party support (%)",
    xlab="",col=selected.cols,xaxt="n",ylim=opt$ylims,yaxs="i")
abline(h=seq(0,95,by=5),col="lightgrey",lty=3)
abline(v=as.double(ticks),col="lightgrey",lty=3)
box()
axis(1,at=as.double(ticks),labels=format(ticks,format="1 %b\n%Y"),cex.axis=0.8)
axis(4,at=axTicks(4),labels=rep("",length(axTicks(4))))

#Now calculate the gam smoothers and add the confidence interval
smoothed.l <- list()
for(n in selected.parties) {
  smooth.dat <-  data.frame(value=plt.dat[,n],company=plt.dat$Company,date=plt.dat$date.num)
  #Smoother is a GAMM with polling company as a random effect
  #Initially, we use a fixed term smoother. Once we get some data, 
  #can switch to automatic smoothness selection
  smoother <- gamm(value ~ s(date,k=10) ,data=smooth.dat,random=list(company=~1))
  smoothers[[n]] <- smoother
  smoothed <- do.call(data.frame,predict(smoother$gam,se=TRUE))
  smoothed$date <- smoother$gam$model$date
  polygon(c(smoothed$date,rev(smoothed$date)),
    c(smoothed$fit+smoothed$se.fit*1.96,rev(smoothed$fit-smoothed$se.fit*1.96)),
    col=rgb(0.5,0.5,0.5,0.5),border=NA)
  smoothed.l[[n]] <- smoothed
}

#Then add the data points
matpoints(plt.dat$date.num,plt.dat[,selected.parties],pch=20,col=selected.cols)
#And finally the smoothers themselves
for(n in selected.parties) {
  lines(smoothed.l[[n]]$date,smoothed.l[[n]]$fit,col=selected.cols[n],lwd=2)
}

n.parties <- length(selected.parties)
legend(grconvertX(0.5,"npc"),grconvertY(0.0,"ndc"),xjust=0.5,yjust=0,
       legend=gsub("_"," ",selected.parties),
       col=selected.cols,pch=20,bg="white",lwd=2,
       ncol=ifelse(n.parties>4,ceiling(n.parties/2),n.parties),xpd=NA)
#Add best estimates
fmt.str <- sprintf("%%2.%if\261%%1.%if %%%%",opt$dp,opt$dp)
for(n in names(smoothed.l)) {
  lbl <- sprintf(fmt.str,
                 round(rev(smoothed.l[[n]]$fit)[1],opt$dp),
                 round(1.96*rev(smoothed.l[[n]]$se.fit)[1],opt$dp))
  text(rev(plt.dat$date.num)[1],rev(smoothed.l[[n]]$fit)[1],
       labels=lbl,pos=4,col=selected.cols[n],xpd=NA)
}
dev.off()
}

#==========================================
#Finished!
#==========================================

cat("Complete.\n")


Llicència

Jo, el titular dels drets d'autor d'aquest treball, el public sota la següent llicència:
w:ca:Creative Commons
reconeixement compartir igual
Aquest fitxer està subjecte a la llicència de Creative Commons Reconeixement i Compartir Igual 3.0 No adaptada.
Sou lliure de:
  • compartir – copiar, distribuir i comunicar públicament l'obra
  • adaptar – fer-ne obres derivades
Amb les condicions següents:
  • reconeixement – Heu de donar la informació adequada sobre l'autor, proporcionar un enllaç a la llicència i indicar si s'han realitzat canvis. Podeu fer-ho amb qualsevol mitjà raonable, però de cap manera no suggereixi que l'autor us dóna suport o aprova l'ús que en feu.
  • compartir igual – Si modifiqueu, transformeu, o generareu amb el material, haureu de distribuir les vostres contribucions sota una llicència similar o una de compatible com l'original
Any autoconfirmed user can overwrite this file from the same source. Please ensure that overwrites comply with the guideline.

Llegendes

Afegeix una explicació d'una línia del que representa aquest fitxer

Elements representats en aquest fitxer

representa l'entitat

Historial del fitxer

Cliqueu una data/hora per veure el fitxer tal com era aleshores.

(les més noves | les més antigues) Mostra (10 posteriors | ) (10 | 20 | 50 | 100 | 250 | 500)
Data/horaMiniaturaDimensionsUsuari/aComentari
actual22:36, 18 set 2014Miniatura per a la versió del 22:36, 18 set 2014778 × 487 (13 Ko)Lcmortensenupdate to 19 September, change prediction to 1dp.
07:44, 17 set 2014Miniatura per a la versió del 07:44, 17 set 2014778 × 487 (13 Ko)Lcmortensenupdate to 17 September 2014
00:14, 14 set 2014Miniatura per a la versió del 00:14, 14 set 2014778 × 487 (13 Ko)Lcmortensenupdate to 14 September release
08:07, 11 set 2014Miniatura per a la versió del 08:07, 11 set 2014778 × 487 (13 Ko)Lcmortensenupdate to 11 September 2014
10:37, 5 set 2014Miniatura per a la versió del 10:37, 5 set 2014778 × 487 (12 Ko)Lcmortensenupdate to 5 September 2014
10:34, 5 set 2014Miniatura per a la versió del 10:34, 5 set 2014778 × 487 (12 Ko)Onco p53Update to 53 September 2014
08:31, 3 set 2014Miniatura per a la versió del 08:31, 3 set 2014778 × 487 (12 Ko)LcmortensenUpdate to 3 September 2014
08:17, 31 ago 2014Miniatura per a la versió del 08:17, 31 ago 2014778 × 487 (12 Ko)Lcmortensenupdate to 31 August 2014
08:12, 27 ago 2014Miniatura per a la versió del 08:12, 27 ago 2014778 × 487 (12 Ko)Lcmortensenupdate to 27 Aug 2014
10:42, 17 ago 2014Miniatura per a la versió del 10:42, 17 ago 2014778 × 487 (12 Ko)Onco p53updated 17 August 2014
(les més noves | les més antigues) Mostra (10 posteriors | ) (10 | 20 | 50 | 100 | 250 | 500)

La pàgina següent utilitza aquest fitxer:

Ús global del fitxer

Utilització d'aquest fitxer en altres wikis: