Vés al contingut

Fitxer:Newton versus Schwarzschild trajectories.gif

El contingut de la pàgina no s'admet en altres llengües.
De la Viquipèdia, l'enciclopèdia lliure

Newton_versus_Schwarzschild_trajectories.gif (800 × 526 píxels, mida del fitxer: 2,17 Mo, tipus MIME: image/gif, en bucle, 500 fotogrames, 15 s)

Nota: per limitacions tècniques no s'animaran les miniatures d'alta resolució d'imatges GIF com aquesta.

Descripció a Commons

Resum

Descripció
English: Comparison of a testparticle's trajectory in Newtonian and Schwarzschild spacetime in the strong gravitational field (r0=10rs=20GM/c²). The initial velocity in both cases is 126% of the circular orbital velocity. φ0 is the launching angle (0° is a horizontal shot, and 90° a radially upward shot). Since the metric is spherically symmetric the frame of reference can be rotated so that Φ is constant and the motion of the test-particle is confined to the r,θ-plane (or vice versa).
Data
Font Treball propi - Mathematica Code
Autor Yukterez (Simon Tyran, Vienna)
Altres versions Kerr orbit, a=0.9

Equations of motion

Newton

In spherical coordinates and natural units of , where lengths are measured in and times in , the motion of a testparticle in the presence of a dominant mass is defined by

The initial conditions are

The overdot stands for the time-derivative. is the angular coordinate, the local elevation angle of the test particle, and it's velocity.

and , where the kinetic and potential component (all in units of ) give the total energy , and the angular momentum, which is given by (in units of ) where is the transverse and the radial velocity component, are conserved quantities.

Schwarzschild

The equations of motion [1] in Schwarzschild-coordinates are

which is except for the term identical with Newton, although the radial coordinate has a different meaning (see farther below). The time dilation is

The coordinates are differentiated by the test particle's proper time , while is the coordinate time of the bookkeeper at infinity. So the total coordinate time ellapsed between the proper time interval

is

The local velocity (relative to the main mass) and the coordinate celerity are related by

for the input and for the output of the transverse and

or the other way around for the radial component of motion.

The shapiro-delayed velocity in the bookeeper's frame of reference is

and

The initial conditions in terms of the local physical velocity are therefore

The horizontal and vertical components differ by a factor of

because additional to the gravitational time dilation there is also a radial length contraction of the same factor, which means that the physical distance between

and is not but

due to the fact that space around a mass is not euclidean, and a shell of a given diameter contains more volume when a central mass is present than in the absence of a such.

The angular momentum

in units of and the total energy as the sum of rest-, kinetic- and potential energy

in units of , where is the test particle's restmass, are the constants of motion. The components of the total energy are

for the kinetic plus for the potential energy plus , the test particle's invariant rest mass.

The equations of motion in terms of and are

or, differentiated by the coordinate time

with

where in contrast to the overdot, which stands for , the overbar denotes .

For massless particles like photons in the formula for and is replaced with and the in the equations of motion set to , with as Planck's constant and for the photon's frequency.

Llicència

Jo, el titular dels drets d'autor d'aquest treball, el public sota la següent llicència:
w:ca:Creative Commons
reconeixement compartir igual
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
Sou lliure de:
  • compartir – copiar, distribuir i comunicar públicament l'obra
  • adaptar – fer-ne obres derivades
Amb les condicions següents:
  • reconeixement – Heu de donar la informació adequada sobre l'autor, proporcionar un enllaç a la llicència i indicar si s'han realitzat canvis. Podeu fer-ho amb qualsevol mitjà raonable, però de cap manera no suggereixi que l'autor us dóna suport o aprova l'ús que en feu.
  • compartir igual – Si modifiqueu, transformeu, o generareu amb el material, haureu de distribuir les vostres contribucions sota una llicència similar o una de compatible com l'original

References

  1. Cole Miller for the Department of Astronomy, University of Maryland: ASTR 498, High Energy Astrophysics

Usage in Wikipedia Articles

en.wikipedia.org

de.wikipedia.org

ru.wikipedia.org

es.wikipedia.org

zh.wikipedia.org

Llegendes

Afegeix una explicació d'una línia del que representa aquest fitxer
orbit aroud a central mass, comparison Newton vs Einstein

Elements representats en aquest fitxer

representa l'entitat

Historial del fitxer

Cliqueu una data/hora per veure el fitxer tal com era aleshores.

Data/horaMiniaturaDimensionsUsuari/aComentari
actual19:47, 30 set 2021Miniatura per a la versió del 19:47, 30 set 2021800 × 526 (2,17 Mo)Yukterezrevert vandalism
16:03, 14 març 2020Miniatura per a la versió del 16:03, 14 març 2020777 × 514 (7,97 Mo)Bürgerentscheidframes reduced and slightly resized to fit 100 MP limit
20:36, 11 jul 2018Miniatura per a la versió del 20:36, 11 jul 2018800 × 526 (2,17 Mo)Yukterezchoosing dt/dτ instead of dτ/dt for the time dilation factor to fit existing conventions
09:31, 13 feb 2017Miniatura per a la versió del 09:31, 13 feb 2017800 × 526 (2,17 Mo)Yukterezreduced filesize by 1MB by reducing the colors
09:15, 13 feb 2017Miniatura per a la versió del 09:15, 13 feb 2017800 × 526 (3,1 Mo)YukterezUser created page with UploadWizard

La pàgina següent utilitza aquest fitxer:

Ús global del fitxer

Utilització d'aquest fitxer en altres wikis:

Metadades