DescripcióNewton versus Schwarzschild trajectories.gif
English: Comparison of a testparticle's trajectory in Newtonian and Schwarzschild spacetime in the strong gravitational field (r0=10rs=20GM/c²). The initial velocity in both cases is 126% of the circular orbital velocity. φ0 is the launching angle (0° is a horizontal shot, and 90° a radially upward shot). Since the metric is spherically symmetric the frame of reference can be rotated so that Φ is constant and the motion of the test-particle is confined to the r,θ-plane (or vice versa).
In spherical coordinates and natural units of , where lengths are measured in and times in , the motion of a testparticle in the presence of a dominant mass is defined by
and , where the kinetic and potential component (all in units of ) give the total energy , and the angular momentum, which is given by (in units of ) where is the transverse and the radial velocity component, are conserved quantities.
which is except for the term identical with Newton, although the radial coordinate has a different meaning (see farther below). The time dilation is
The coordinates are differentiated by the test particle's proper time , while is the coordinate time of the bookkeeper at infinity. So the total coordinate time ellapsed between the proper time interval
is
The local velocity (relative to the main mass) and the coordinate celerity are related by
for the input and for the output of the transverse and
or the other way around for the radial component of motion.
The shapiro-delayed velocity in the bookeeper's frame of reference is
and
The initial conditions in terms of the local physical velocity are therefore
The horizontal and vertical components differ by a factor of
because additional to the gravitational time dilation there is also a radial length contraction of the same factor, which means that the physical distance between
and is not but
due to the fact that space around a mass is not euclidean, and a shell of a given diameter contains more volume when a central mass is present than in the absence of a such.
The angular momentum
in units of and the total energy as the sum of rest-, kinetic- and potential energy
in units of , where is the test particle's restmass, are the constants of motion. The components of the total energy are
for the kinetic plus for the potential energy plus , the test particle's invariant rest mass.
The equations of motion in terms of and are
or, differentiated by the coordinate time
with
where in contrast to the overdot, which stands for , the overbar denotes .
For massless particles like photons in the formula for and is replaced with and the in the equations of motion set to , with as Planck's constant and for the photon's frequency.
Llicència
Jo, el titular dels drets d'autor d'aquest treball, el public sota la següent llicència:
compartir – copiar, distribuir i comunicar públicament l'obra
adaptar – fer-ne obres derivades
Amb les condicions següents:
reconeixement – Heu de donar la informació adequada sobre l'autor, proporcionar un enllaç a la llicència i indicar si s'han realitzat canvis. Podeu fer-ho amb qualsevol mitjà raonable, però de cap manera no suggereixi que l'autor us dóna suport o aprova l'ús que en feu.
compartir igual – Si modifiqueu, transformeu, o generareu amb el material, haureu de distribuir les vostres contribucions sota una llicència similar o una de compatible com l'original
Aquest fitxer conté informació addicional, probablement afegida per la càmera digital o l'escàner utilitzat per a crear-lo o digitalitzar-lo. Si s'ha modificat posteriorment, alguns detalls poden no reflectir les dades reals del fitxer modificat.