Vés al contingut

Fitxer:Orthogonal Matching Pursuit.gif

El contingut de la pàgina no s'admet en altres llengües.
De la Viquipèdia, l'enciclopèdia lliure

Orthogonal_Matching_Pursuit.gif (576 × 189 píxels, mida del fitxer: 1.003 Ko, tipus MIME: image/gif, en bucle, 96 fotogrames)

Descripció a Commons

Resum

Descripció
English: Retrieving an unknown signal (gray line) from a small number of measurements (black dots) is in general impossible.

But if you know that the signal can be represented with only a few nonzero elements of a basis, then you can use "compressed sensing". By making the measurement in a basis that is incoherent with the basis the signal is sparse in, you ensure each measurement sample as many coefficients as possible. Here showing a "orthogonal-matching-pursuit" algorithm. The starting guess is that all coefficient are zero. At each iteration we add one coefficient that is nonzero, choosing the one that will effect our error metric the most.

The value of those few nonzero coefficients are then estimated by a least-square fitting, and the process is iterated until the error is smaller than a given threshold.
Data
Font https://twitter.com/j_bertolotti/status/1214918749838594048
Autor Jacopo Bertolotti
Permís
(Com reutilitzar aquest fitxer)
https://twitter.com/j_bertolotti/status/1030470604418428929

Mathematica 11.0 code

(*Step 1: Generate the function to be retrieved and the "measurement matrix"*)
dim = 200; (*Number of points in the original data (input)*)
nm = 30; (*Number of measurements done*)
hf[n_, x_] := (E^(-(x^2/2)) HermiteH[n, x])/Sqrt[n! 2^n Sqrt[\[Pi]]]; (*Hermite polynomials*)
nb = 6; (*number of nonzero coefficients*)
nzc = Sort@RandomSample[Range[40], nb] (*non zero coefficients*)
c = RandomReal[{-0.8, 0.8}, nb]; (*coeffieicents*)
g = Sum[c[[j]] hf[nzc[[j]], z], {j, 1, nb}]; (*function we would like to retrieve (sparse in the Hermite polynomial basis by construction)*)
xideal = Normal@SparseArray[nzc -> c, {dim}]; (*ideal x vector we would like to retrieve*)
df = Table[g // N, {z, -7, 7, 14/(dim - 1)}]; 
m = Sort@RandomSample[Range[dim], nm]; (*Points where we make the measurements (in the canonical basis)*)
Atmp = SparseArray[Table[{j, m[[j]]}, {j, 1, nm}] -> Table[1, {j, 1, nm}] , {nm, dim}]; (*measurement matrix*)
\[CapitalPhi] = Table[N@hf[n, x], {n, 1, dim}, {x, -7, 7, 14/(dim - 1)}];(*matrix of change of basis from Hermite to canonical (rows are the hermite polynomials)*)
A = Atmp.Transpose[\[CapitalPhi]];
y = A.xideal;

(*Step 2: A working (but not optimized) implementation of the Orthogonal Matching Pursuit algorithm*)
(*initialization*)
\[Epsilon]0 = 10^-10; (*error threshold*)
x = Table[0, {dim}]; (*first guess for the coefficients is that they are all zero*)
r = y; (*so the residuals are identical to the measurements*)
nS = Range[dim]; (*the complement of the support is everything*)

\[Epsilon] = Table[Norm[A[[All, j]].r/Norm[A[[All, j]] ]^2 A[[All, j]] - r]^2, {j, 1, dim}][[nS]]; (*calculate the error for all columns of A that are not already in the support*)
j = Position[\[Epsilon], Min[\[Epsilon]]][[1, 1]]; (*select the one with the biggest impact on the error*)
\[Epsilon] = \[Epsilon][[j]]; (*that one is the new error*)
nS = Drop[nS, {j}]; (*update the complement of the support*)
S = DeleteCases[Range[dim], Alternatives @@ nS]; (*and thus update the support*)
AS = A[[All, S]]; 
x[[S]] = Inverse[Transpose[AS].AS].Transpose[AS].y; (*find the best fit for the new estimate of x (least square fit)*)
r = y - A.x; (*update the residuals*)
tmp = x;

evo = Reap[While[\[Epsilon] > \[Epsilon]0, (*repeat until the error is small enough*)
      \[Epsilon] = Table[Norm[A[[All, j]].r/Norm[A[[All, j]] ]^2 A[[All, j]] - r]^2, {j, 1, dim}][[nS]];
      j = Position[\[Epsilon], Min[\[Epsilon]]][[1, 1]];
      \[Epsilon] = \[Epsilon][[j]];
      nS = Drop[nS, {j}];
      S = DeleteCases[Range[dim], Alternatives @@ nS];
      AS = A[[All, S]]; 
      x[[S]] = Inverse[Transpose[AS].AS].Transpose[AS].y;
      r = y - A.x;
      Sow[x];
      ];][[2, 1]];
evo = Prepend[evo, tmp];

(*Step 3: Generate the animation*)
p0 = Table[GraphicsRow[{
     Show[
      ListPlot[df, Joined -> True, PlotStyle -> {Thick, Gray}, Axes -> False, PlotRange -> {-1, 1}, Epilog -> {PointSize[0.02], Point[({m, y} // Transpose)[[1 ;; k]] ]}] ]
     ,
     ListPlot[Table[0, {50}], PlotRange -> {{0, 50}, {-1, 1}}, Filling -> Axis, PlotStyle -> {Purple, PointSize[0.02]}, Axes -> False, Frame -> True, FrameLabel -> {"Element of the basis", "Coefficient"}, 
      LabelStyle -> {Bold, Black}]
     }, ImageSize -> Large]
   , {k, 1, nm}];
p1 = Table[
   GraphicsRow[{
     Show[
      ListPlot[df, Joined -> True, PlotStyle -> {Thick, Gray}, PlotRange -> {-1, 1}], ListPlot[(1 - \[Tau])*0 + \[Tau] Transpose[\[CapitalPhi]].evo[[1]], Joined -> True, PlotStyle -> {Thick, Orange}]
      , Axes -> False, PlotRange -> {-1, 1}, Epilog -> {PointSize[0.02], Point[{m, y} // Transpose]}
      ]
     ,
     ListPlot[\[Tau] evo[[1]], PlotRange -> {{0, 50}, {-1, 1}}, Filling -> Axis, PlotStyle -> {Purple, PointSize[0.02]}, Axes -> False, Frame -> True, FrameLabel -> {"Element of the basis", "Coefficient"}, 
      LabelStyle -> {Bold, Black}]
     }, ImageSize -> Large]
   , {\[Tau], 0, 1, 0.1}];
p2 = Table[Table[
    GraphicsRow[{
      Show[
       ListPlot[df, Joined -> True, PlotStyle -> {Thick, Gray}, PlotRange -> {-1, 1}], ListPlot[(1 - \[Tau])*Transpose[\[CapitalPhi]].evo[[k - 1]] + \[Tau] Transpose[\[CapitalPhi]].evo[[k]], 
        Joined -> True, PlotStyle -> {Thick, Orange}]
       , Axes -> False, PlotRange -> {-1, 1}, Epilog -> {PointSize[0.02], Point[{m, y} // Transpose]}
       ]
      ,
      ListPlot[(1 - \[Tau]) evo[[k - 1]] + \[Tau] evo[[k]], PlotRange -> {{0, 50}, {-1, 1}}, Filling -> Axis, PlotStyle -> {Purple, PointSize[0.02]}, Axes -> False, Frame -> True, 
       FrameLabel -> {"Element of the basis", "Coefficient"}, LabelStyle -> {Bold, Black}]
      }, ImageSize -> Large]
    , {\[Tau], 0, 1, 0.1}], {k, 2, Dimensions[S][[1]] - 1}];
ListAnimate[Flatten[Join[p0, p1, p2]]]

Llicència

Jo, el titular dels drets d'autor d'aquest treball, el public sota la següent llicència:
Creative Commons CC-Zero L'ús d'aquest fitxer és regulat sota les condicions de Creative Commons de CC0 1.0 lliurament al domini públic universal.
La persona que ha associat un treball amb aquest document ha dedicat l'obra domini públic, renunciant en tot el món a tots els seus drets de d'autor i a tots els drets legals relacionats que tenia en l'obra, en la mesura permesa per la llei. Podeu copiar, modificar, distribuir i modificar l'obra, fins i tot amb fins comercials, tot sense demanar permís.

Llegendes

Afegeix una explicació d'una línia del que representa aquest fitxer
Retrival of a signal from a few data point using compressed sensing

Elements representats en aquest fitxer

representa l'entitat

Historial del fitxer

Cliqueu una data/hora per veure el fitxer tal com era aleshores.

Data/horaMiniaturaDimensionsUsuari/aComentari
actual10:24, 9 gen 2020Miniatura per a la versió del 10:24, 9 gen 2020576 × 189 (1.003 Ko)BertoUser created page with UploadWizard

La pàgina següent utilitza aquest fitxer:

Ús global del fitxer

Utilització d'aquest fitxer en altres wikis:

Metadades