Vés al contingut

Fitxer:SPP silver-air interface 370nm.gif

El contingut de la pàgina no s'admet en altres llengües.
De la Viquipèdia, l'enciclopèdia lliure

SPP_silver-air_interface_370nm.gif (480 × 320 píxels, mida del fitxer: 475 Ko, tipus MIME: image/gif, en bucle, 30 fotogrames, 2,1 s)

Descripció a Commons

Resum

Descripció
English: E-field of a surface plasmon polariton, at the silver-air interface. The animation shows how the E-field varies over an optical cycle. Free-space wavelength is 370nm, so the permittivity of silver is -2.62 + 0.626i. The picture is 0.3 * 370 nanometers across horizontally.
Data
Font Treball propi
Autor Sbyrnes321

Llicència

Jo, el titular dels drets d'autor d'aquest treball, el public sota la següent llicència:
Creative Commons CC-Zero L'ús d'aquest fitxer és regulat sota les condicions de Creative Commons de CC0 1.0 lliurament al domini públic universal.
La persona que ha associat un treball amb aquest document ha dedicat l'obra domini públic, renunciant en tot el món a tots els seus drets de d'autor i a tots els drets legals relacionats que tenia en l'obra, en la mesura permesa per la llei. Podeu copiar, modificar, distribuir i modificar l'obra, fins i tot amb fins comercials, tot sense demanar permís.

Source code

 
Aquesta GIF imatge rasteritzada ha estat creada amb Matplotlib.
"""
(C) Steven Byrnes, 2013. This code is released under the MIT license
http://opensource.org/licenses/MIT

This code runs in Python 2.7 or 3.3. It requires imagemagick to be installed;
that's how it assembles images into animated GIFs.

Creates an animation of the electric field vectors of a
surface-plasmon-polariton wave. The metal-dielectric interface is at z=0,
with metal at z<0 and dielectric (such as air) at z>0.
"""
 
# Use Python 3 style division and print
# a/b is real division, a//b is integer division
from __future__ import division, print_function

import numpy as np
from cmath import exp, pi

import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches

import subprocess, os
directory_now = os.path.dirname(os.path.realpath(__file__))

# --- PART 1 OF 2: PHYSICS --- #

def Efield(x_times_kvac, z_times_kvac, t_times_omega, eps_m, eps_d, print_wave_properties=False):
    """"
    Inputs:
      * x_times_kvac and z_times_kvac are the coordinates (x,z) multiplied
          by the vacuum angular wavenumber kvac = omega / c.
      * t_times_nu is the time t multiplied by frequency nu.
      * eps_m and eps_d are the complex permittivities of the metal and dielectric.
    
    Output: The electric field vector (E_x,E_z). It is scaled so that
      E_z(0, 0, tw, e1, e2) = cos(tw) on the dielectric side of the interface.
    """
    # Calculate components of the angular wavevector in the dielectric and
    # metal, as a multiple of kvac = omega / c:
    eps_m = complex(eps_m) #cast to complex, so square roots won't raise errors.
    kx_over_kvac = (eps_m * eps_d / (eps_m + eps_d))**(1/2)
    kzd_over_kvac = (eps_d - kx_over_kvac**2)**(1/2)
    kzm_over_kvac = (eps_m - kx_over_kvac**2)**(1/2)
    
    # Pick the correct square-roots, so that e^(i*k*z) decays away from interface
    if kzd_over_kvac.imag < 0:
        kzd_over_kvac *= -1
    if kzm_over_kvac.imag > 0:
        kzm_over_kvac *= -1
    
    #double-check the boundary condition
    almost_equal = lambda a,b,tolerance : (abs(a-b) / (abs(a) + abs(b))) < tolerance
    if not almost_equal(kzd_over_kvac * eps_m, kzm_over_kvac * eps_d, 1e-10):
        raise ValueError('Something is wrong! Boundary condition fails!')
    
    if print_wave_properties:
        print('kx / kvac = ', kx_over_kvac)
        print('kzd / kvac = ', kzd_over_kvac)
        print('kzm / kvac = ', kzm_over_kvac)
        print('Wavelength / (Vacuum wavelength) = ', 1/(kx_over_kvac.real))
        if kx_over_kvac.imag != 0:
            print('(Decay length) / (Vacuum wavelength) = ', 1/(kx_over_kvac.imag))
        else:
            print('Wave does not decay, it propagates forever.')
        print('(Decay length into dielectric) / (Vacuum wavelength) = ', 1/(kzd_over_kvac.imag))
        print('(Decay length into metal) / (Vacuum wavelength) = ', -1/(kzm_over_kvac.imag))
   
    if z_times_kvac > 0:
        # dielectric
        Ez = exp(1j * kx_over_kvac * x_times_kvac + 1j * kzd_over_kvac * z_times_kvac - 1j * t_times_omega)
        Ex = -Ez * kzd_over_kvac / kx_over_kvac
    else:
        # metal
        Ez = (kzd_over_kvac / kzm_over_kvac) * exp(
                 1j * kx_over_kvac * x_times_kvac + 1j * kzm_over_kvac * z_times_kvac - 1j * t_times_omega)
        Ex = -Ez * kzm_over_kvac / kx_over_kvac
    return (Ex.real, Ez.real)

# --- PART 2 OF 2: DRAWING --- #

def draw_box(x1, x2, y1, y2, color):
    """
    Code to draw a rectangular box in matplotlib ... used to color the metal area.
    See http://matplotlib.org/users/path_tutorial.html
    """
    vertices = [ (x1, y1), (x1, y2), (x2, y2), (x2, y1), (x1, y1)]
    codes = [Path.MOVETO,Path.LINETO,Path.LINETO,Path.LINETO,Path.CLOSEPOLY]
    path = Path(vertices, codes)
    #lw=0 means no outline; zorder=-1 means it shouldn't block the arrows.
    return patches.PathPatch(path, facecolor=color, lw=0, zorder=-1)

def draw_frame(t_times_omega, eps_m, eps_d, aspect_ratio=1.5,
               frac_metal=0.5, fig_width_px=480, x_range_times_kvac=2,
               img_filename=None):
    """
    Draw one frame of the animation.
    
    Inputs:
      * t_times_omega is time multiplied by angular frequency,
          it goes 0 --> 2pi each cycle.
      * eps_m and eps_d are the dielectric constants of the metal and dielectric
      * aspect_ratio is width over height
      * frac_metal is how much of the image is taken up by the metal.
      * fig_width_px is figure width in pixels
      * x_range_times_kvac is the width of the image as a multiple of kvac.
      * "img_filename" is what to save the frame as (or None to not save it).
    """
    # Figure geometry...
    fig_height_px = fig_width_px // aspect_ratio
    dpi = 80 #This number doesn't affect the final animation...
    fig_width_inches = fig_width_px / dpi
    fig_height_inches = fig_height_px / dpi
    
    # Coordinate limits in figure. All are implicitly multiplied by kvac.
    z_range_times_kvac = x_range_times_kvac / aspect_ratio
    xmin = 0
    xmax = x_range_times_kvac
    zmin = -z_range_times_kvac * frac_metal
    zmax = z_range_times_kvac * (1-frac_metal)
    
    # How many arrows to draw?
    num_arrows_x = 15
    num_arrows_z = num_arrows_x // aspect_ratio
    
    # Pick arrow coordinates...
    arrow_x_list, spacing = np.linspace(xmin, xmax, num=num_arrows_x,
                                     endpoint=False, retstep=True)
    arrow_x_list += spacing / 2
    
    arrow_z_list, spacing = np.linspace(zmin, zmax, num=num_arrows_z,
                                     endpoint=False, retstep=True)
    arrow_z_list += spacing / 2

    X,Z = np.meshgrid(arrow_x_list, arrow_z_list)
    
    # Arrow length scale: Larger number = smaller arrows
    arrow_len_scale = 15
    
    # Calculate the length of each arrow
    Ex_func = np.vectorize(lambda x,z : Efield(x,z,t_times_omega,eps_m,eps_d)[0])
    Ex_array = Ex_func(X, Z)
    Ez_func = np.vectorize(lambda x,z : Efield(x,z,t_times_omega,eps_m,eps_d)[1])
    Ez_array = Ez_func(X, Z)
    
    # Open a new figure with correct aspect ratio and pixel count and white background
    fig = plt.figure(figsize = (fig_width_inches,fig_height_inches), dpi=dpi, facecolor='w')
    
    # Draw a new set of axes that fill the entire figure area
    ax=fig.add_axes((0,0,1,1),axisbg='w')
    ax.set_axis_off()
    
    # Color the metal part
    metal_color = '#dddddd' #light gray
    ax.add_patch(draw_box(xmin,xmax,zmin,0,metal_color))
    
    # Draw the arrows
    ax.quiver(X, Z, Ex_array , Ez_array , scale=arrow_len_scale, scale_units='width', pivot='middle')
    
    ax.set_xlim(xmin, xmax)
    ax.set_ylim(zmin, zmax)
    if img_filename is not None:
        fig.savefig(os.path.join(directory_now, img_filename), dpi=dpi)
 
def draw_anim(eps_m, eps_d, anim_filename='anim.gif', frames_in_anim=30,
              total_anim_time_in_sec=2, keep_frame_images=False, **kwargs):
    """
    Create an animated GIF. **kwargs are all the keyword arguments to
    draw_frame()
    
    keep_frame_images=True to save the individual frame image files that make
    up the animation; otherwise they are created and immediately deleted.
    """
    filename_list = ['temp' + str(n) + '.png' for n in range(frames_in_anim)]
    
    for n in range(frames_in_anim):
        draw_frame(2*pi*n/frames_in_anim, eps_m, eps_d,
                   img_filename=filename_list[n], **kwargs)
    
    seconds_per_frame = total_anim_time_in_sec / frames_in_anim
    frame_delay = str(seconds_per_frame * 100)
    command_list = ['convert', '-delay', frame_delay, '-loop', '0'] + filename_list + [anim_filename]
    # Use the "convert" command (part of ImageMagick) to build the animation
    subprocess.call(command_list, cwd=directory_now)
    if keep_frame_images is False:
        for filename in filename_list:
            os.remove(os.path.join(directory_now, filename))

###################################################################

if True:
    # Silver-air interface at 370nm, using data from Palik
    eps_m = -2.62 + 0.626j
    eps_d = 1
    # Print diagnostics
    Efield(0, 0, 0, eps_m, eps_d, print_wave_properties=True)
    # Create animation
    draw_anim(eps_m, eps_d, anim_filename='Silver_370nm_Palik.gif')

Llegendes

Afegeix una explicació d'una línia del que representa aquest fitxer

Elements representats en aquest fitxer

representa l'entitat

Historial del fitxer

Cliqueu una data/hora per veure el fitxer tal com era aleshores.

Data/horaMiniaturaDimensionsUsuari/aComentari
actual23:06, 2 des 2013Miniatura per a la versió del 23:06, 2 des 2013480 × 320 (475 Ko)Sbyrnes321User created page with UploadWizard

La pàgina següent utilitza aquest fitxer:

Ús global del fitxer

Utilització d'aquest fitxer en altres wikis: