Vés al contingut

Fitxer:Valeriepieris circle azimuthal equal area.png

El contingut de la pàgina no s'admet en altres llengües.
De la Viquipèdia, l'enciclopèdia lliure

Fitxer original (1.024 × 1.024 píxels, mida del fitxer: 1,16 Mo, tipus MIME: image/png)

Descripció a Commons

Resum

Descripció
English: Danny Quah's Valerispieris circle on a globe model, centred on Mong Khet, Myanmar, rendered in azimuthal equal-area projection from the equirectangular projection from http://commons.wikimedia.org/wiki/File:Earthmap1000x500.jpg by CMG Lee. The fraction of the area of circle to that of the globe is equal to its equivalent on Earth.
Data upload 25. Oct. 2005
Font
Earthmap1000x500.jpg
Autor cmglee, jimht at shaw dot ca
Altres versions
Valeriepieris circle azimuthal equidistant.png
Mecca azimuthal equidistant.png
Cambridge azimuthal equidistant.png

Python source

#!/usr/bin/env python

import re, math, png

path_in          = 'mya/Earthmap1000x500.png'
path_out         = 'Valeriepieris_circle_azimuthal_equal_area.png'
colour_circle    = [255, 255, 0]
radius_circle    = 0.51
thickness_circle = 0.01
lat_centre       = 21.7
long_centre      = 99.383333
zoom             = 0.5
# zoom             = 0.33
# out_size         = 512
out_size         = 2048
out_size_half    = out_size * 0.5

class Png:
 def __init__(self, path_in):
  (self.width, self.height, self.pixels, self.metadata) = png.Reader(path_in).read_flat()
  self.planes = self.metadata['planes']
 def __str__(self): return str((self.width, self.height, len(self.pixels), self.metadata))
 def write(self, path_out):
  png.Writer(width=self.width, height=self.height,
             bitdepth=self.metadata['bitdepth'], interlace=self.metadata['interlace'],
             planes=self.metadata['planes'], greyscale=self.metadata['greyscale'],
             alpha=self.metadata['alpha']).write_array(open(path_out, 'wb'), self.pixels)

## Formula from http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html
def azimuthal_equidistant_to_equirectangular(x, y, lat_centre, long_centre):
 c              = math.hypot(x, y)
 if c == 0 or (abs(lat_centre) == 90 and y == 0): return (0, 0)
 sin_c          = math.sin(c)
 cos_c          = math.cos(c)
 lat_centre_rad = math.radians(lat_centre)
 sin_lat_centre = math.sin(lat_centre_rad)
 cos_lat_centre = math.cos(lat_centre_rad)
 to_asin  = cos_c * sin_lat_centre + y * sin_c * cos_lat_centre / c
 if abs(to_asin) > 1: return (0, 0)
 lat  =  math.degrees(math.asin(to_asin))
 long = (math.degrees(math.atan2(-x, y) if lat_centre ==  90 else
                      math.atan2( x, y) if lat_centre == -90 else
                      math.atan2(x * sin_c, c * cos_lat_centre * cos_c -
                                            y * sin_lat_centre * sin_c)) +
         long_centre + 540) % 360 - 180 ## +540%360-180 to make range [-180,180)
 return (lat, long)
## From http://mathworld.wolfram.com/LambertAzimuthalEqual-AreaProjection.html
def azimuthal_equal_area_to_equirectangular(x, y, lat_centre, long_centre):
 rho            = math.hypot(x, y)
 if rho == 0 or (abs(lat_centre) == 90 and y == 0) or abs(rho * 0.5) > 1:
  return (None, None)
 c              = 2 * math.asin(rho * 0.5)
 sin_c          = math.sin(c)
 cos_c          = math.cos(c)
 lat_centre_rad = math.radians(lat_centre)
 sin_lat_centre = math.sin(lat_centre_rad)
 cos_lat_centre = math.cos(lat_centre_rad)
 to_asin  = cos_c * sin_lat_centre + y * sin_c * cos_lat_centre / rho
 if abs(to_asin) > 1: return (None, None)
 lat  =  math.degrees(math.asin(to_asin))
 long = (math.degrees(math.atan2(x * sin_c, rho * cos_lat_centre * cos_c -
                                            y * sin_lat_centre * sin_c)) +
         long_centre + 540) % 360 - 180 ## +540%360-180 to make range [-180,180)
 return (lat, long)

png_in = Png(path_in)
print(png_in)
print(png_in.pixels[:20])
png_out = Png(path_in) ## copy most of original's metadata
png_out.width  = png_out.height = out_size
png_out.pixels = [0] * (png_out.width * png_out.height)
print(png_out)
for  out_y in range(out_size):
 for out_x in range(out_size):
  x = (out_x / out_size_half - 1) /  zoom
  y = (out_y / out_size_half - 1) / -zoom
  if abs(math.hypot(x,y) - radius_circle) < thickness_circle * zoom:
   colour = colour_circle
  else:
   # (lat, long) = azimuthal_equidistant_to_equirectangular(x, y, lat_centre, long_centre)
   (lat, long) = azimuthal_equal_area_to_equirectangular(x, y, lat_centre, long_centre)
   if lat is None or long is None:
    colour = [0] * png_out.planes
   else:
    in_y      = int(png_in.height * ( 90 - lat ) / 180.0)
    in_x      = int(png_in.width  * (180 + long) / 360.0)
    in_offset = (in_y  * png_in.width + in_x ) * png_in .planes
    colour    = png_in.pixels[in_offset :in_offset  + png_in.planes]
  out_offset  = (out_y * out_size     + out_x) * png_out.planes
  png_out.pixels[out_offset:out_offset + png_out.planes] = colour
png_out.write(path_out)

Llicència

Jo, el titular dels drets d'autor d'aquest treball, el public sota la següent llicència:
w:ca:Creative Commons
reconeixement compartir igual
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
Sou lliure de:
  • compartir – copiar, distribuir i comunicar públicament l'obra
  • adaptar – fer-ne obres derivades
Amb les condicions següents:
  • reconeixement – Heu de donar la informació adequada sobre l'autor, proporcionar un enllaç a la llicència i indicar si s'han realitzat canvis. Podeu fer-ho amb qualsevol mitjà raonable, però de cap manera no suggereixi que l'autor us dóna suport o aprova l'ús que en feu.
  • compartir igual – Si modifiqueu, transformeu, o generareu amb el material, haureu de distribuir les vostres contribucions sota una llicència similar o una de compatible com l'original

Llegendes

Afegeix una explicació d'una línia del que representa aquest fitxer
Danny Quah's Valerispieris circle on a globe model, centred on Mong Khet, Myanmar, rendered in azimuthal equal-area projection from the equirectangular projection

Elements representats en aquest fitxer

representa l'entitat

Historial del fitxer

Cliqueu una data/hora per veure el fitxer tal com era aleshores.

Data/horaMiniaturaDimensionsUsuari/aComentari
actual09:04, 20 gen 2024Miniatura per a la versió del 09:04, 20 gen 20241.024 × 1.024 (1,16 Mo)CmgleeUploaded own work with UploadWizard

La pàgina següent utilitza aquest fitxer:

Ús global del fitxer

Utilització d'aquest fitxer en altres wikis:

Metadades