Geometrical construction diagram for Vesica Piscis figure, formed by the intersection of two circles of the same radius, where each circle's center is on the circumference of the other circle.
Black: Vesica Piscis figure itself
Light blue: Claimed "fishtail" extensions (when it is desired to approximate the Vesica Piscis to an Ichthys)
Light red: Two equilateral triangles formed by drawing straight lines between the centers of the two circles, and between the circle centers and the points of intersection of the circles.
Data
Font
Generated by means of the following PostScript code:
File:Vesica-P-Constr-Diagram.svg és una versió vectorial (SVG) d'aquest fitxer. En cas de ser millor, hauria de ser emprada en lloc d'aquesta imatge tramada.
S'ha alliberat aquesta obra al domini públic pel seu autor AnonMoos. Això s'aplica a tot el món.
En alguns països això pot no ser legalment possible, en tal cas: AnonMoos concedeix a tothom el dret d'usar aquesta obra per a qualsevol propòsit, sense cap condició llevat d'aquelles requerides per la llei.
(Geometrical construction diagram for Vesica Psicis figure, formed by the intersection of two circles of the same radius, where each circle's center is on the circumference of the other circle. *Black: Vesica Piscis figure itself *Light blue: Claimed )
en.wikipedia file upload history
Click on date to download the file or see the image uploaded on that date.
(del) (cur) 05:05, 3 October 2005 . . en:User:AnonMoos AnonMoos ( en:User_talk:AnonMoos Talk) . . 252x362 (5601 bytes) (Geometrical construction diagram for Vesica Psicis figure, formed by the intersection of two circles of the same radius, where each circle's center is on the circumference of the other circle. *Black: Vesica Piscis figure itself *Light blue: Claimed )
Llegendes
Afegeix una explicació d'una línia del que representa aquest fitxer
La bildo estas kopiita de wikipedia:en. La originala priskribo estas: == Summary == Geometrical construction diagram for Vesica Piscis figure, formed by the intersection of two circles of the same radius, where each circle's center is on the circumferenc