El model de partícula en una caixa (també conegut com a pou de potencial infinit), en mecànica quàntica, descriu el comportament d'una partícula amb llibertat de moviment tancada en un espai petit i envoltat de barreres impenetrables. Aquest model s'empra principalment per a il·lustrar les diferències entre els sistemes de física clàssica i física quàntica. En el model clàssic, la partícula es podria moure a qualsevol velocitat i a qualsevol posició de la caixa. No obstant, quan les dimensions de la caixa arriben a uns quants nanòmetres, els efectes quàntics esdevenen importants. Llavors aquesta partícula només pot ocupar certs nivells d'energia positiva (no pot ser mai zero, és a dir, no pot estar parada). Addicionalment, és més probable trobar la partícula en certes posicions que en unes altres, depenent del seu estat energètic. El model de la partícula en una caixa és un dels pocs problemes de mecànica quàntica que es poden resoldre analíticament, sense aproximacions. Serveix per a il·lustrar els nivells d'energia quàntics que també es troben en sistemes més complexos com àtoms i molècules.[1][2][3]
La caixa més senzilla tindria una sola dimensió de manera que la partícula només es pot moure cap endavant i cap enrere tot al llarg d'una línia amb parets impenetrables a cada extrem. Aquests extrems es poden expressar físicament com a regions amb energia potencial infinita. Contràriament, l'interior de la caixa unidimensional tindria una energia potencial igual a zero (representa una zona pou de potencial). Això significa que no pot actuar-hi forces externes i que la partícula es pot moure lliurement. Aquest model es pot expressar:
on és la longitud de la ciaxa d'una sola dimensió, és la posició del centre de la caixa.
es pot substituir el vector posició per la variable unidimensional ens queda :
A l'interior de la caixa no hi ha forces exteriors, i la partícula es pot moure com una partícula lliure. Llavors l'equació anterior és diferencial de segon ordre amb solució :
Solució a l'Equació d'Schrödinger per a una partícula en una caixa unidimensional :
Veure representació gràfica de la Fig.2
El valor s'elimina perque suposa que la partícula no és dintre la caixa.
Deduccions importants:
Els possibles nivells d'energia estan quantitzats ()
El valor de l'energia de la partícula no pot ser mai nul (). Es justifica també amb el principi d'incertesa ja que si la partícula tingués energia nul·la estaria en una posició concreta.
El valor de l'energia augmenta si la caixa es fa més petita ().
La caixa on es mou la partícula és una cavitat esfèrica de radi . Aleshores el sistema a solucionar és l'equació d'Schrödinger amb les següents condicions de contorn (coordinades esfèriques) :
Les solucions alsistema anterior venen donades per les funcions de Bessel :
on
Les funcions d'ona i les energies per :
Solució a l'Equació d'Schrödinger per a una partícula en una cavitat esfèrica per l=0 :
Aleshores es pot deduir :
Els possibles nivells d'energia estan quantitzats ()
El valor de l'energia de la partícula no pot ser mai nul (). Es justifica també amb el principi d'incertesa ja que si la partícula tingués energia nul·la estaria en una posició concreta.
El valor de l'energia augmenta si l'esfera es fa més petita ().
Les funcions d'ona i les energies per altres valor de és més complex. Per :