Sèrie de Liouville-Neumann
En matemàtiques, la sèrie de Liouville-Neumann és una sèrie infinita que correspon a la tècnica resolvent de resolució de les equacions integrals de Fredholm en la teoria de Fredholm.
Definició
[modifica]La sèrie Liouville-Neumann (iterativa) es defineix com
que, sempre que sigui prou petita perquè la sèrie convergeixi, és la solució única contínua de l'equació integral de Fredholm de segon tipus,
Si el n-èsim nucli iterat es defineix com n−1 integrals niades de n operadors K,
aleshores
amb
tan K0 es pot considerar que sigui δ(x−z).
El resolvent (o resolvent el nucli per a l'operador integral) és llavors donat per una «sèrie geomètrica» analògica esquemàtica.
on K0 s'ha pres per ser δ(x−z).
Així doncs, la solució de l'equació integral esdevé simplement
Es poden utilitzar mètodes similars per resoldre les equacions de Volterra.
Referències
[modifica]- Fredholm, Erik I «Sur une classe d'equations fonctionnelles» ( PDF) (en anglès). Acta Mathematica, 27, 1903, pàg. 365–390. DOI: 10.1007/bf02421317.
- Mathews, Jon; Walker, Robert L. Mathematical methods of physics (en anglès). Nova York: W. A. Benjamin, 1970. ISBN 0-8053-7002-1.