Aquest resultat fou demostrat per Leonhard Euler l'any 1737 i, des d'aleshores, s'han formulat diverses demostracions de la divergència de la sèrie. Un d'aquests resultats involucra una fita inferior de la sèrie:
Sigui pi l'i-è nombre primer, i suposem que la sèrie convergeix. Aleshores, ha d'existir un nombre natural k tal que
Sigui x un nombre natural, denotem Mx com el conjunt de valors naturals de n menors o iguals a x no divisibles per cap primer major que pk. Trobarem ara una fita superior i una fita inferior per |Mx| (la cardinalitat del conjunt Mx) i veurem que per valors de x prou grans les fites entren en contradicció.
Tot n de Mx pot escriure's com n = r m² amb m i r naturals, on r és un enter lliure de quadrats. Com que només els k primers p1, …, pk poden aparèixer (amb exponent 1) a la factorització de r, hi ha d'haver com a molt 2k possibilitats diferents per r. Encara més, hi ha d'haver com a molt √x valors possibles per m. Això ens porta a la fita superior
Els x − |Mx| nombres restants a la diferència de conjunts {1, 2, . . ., x} \ Mx són tots divisibles per un primer major que pk. Sigui Ni,x el conjunt dels n naturals menors o iguals a x que són divisibles pel i-è primer pi. Aleshores
Com que el nombre d'enters a Ni,x és com a molt x/pi (de fet és zero per pi > x), tenim