Algorisme de Gauss-Newton
A matemàtiques, l'algorisme de Gauss-Newton s'utilitza per a resoldre problemes no lineals de mínims quadrats.[1] És una modificació del mètode d'optimització de Newton que no depèn de calcular segones derivades i es deu a Carl Friedrich Gauss.[2]
El problema
[modifica]Donades m funcions f 1 ,..., f m de n paràmetres p 1 ,..., p n amb m ≥ n , volem minimitzar la suma
on, p fa al vector ( p 1 ,..., p n ).
L'algorisme
[modifica]L'algorisme de Gauss-Newton és un procediment iteratiu. Això significa que hem de proporcionar una estimació inicial del paràmetre vector que anomenarem p 0 .
Estimacions posteriors p k per al vector paràmetre són produïdes per la relació recurrent:
on f = ( f 1 ,..., f m ) i J f ( p ) denota el Jacobià de f a p (noti's que no cal que J f sigui quadrada).
La matriu inversa, en la pràctica, mai es computa explícitament. en lloc d'ells s'utilitza
i es computa l'actualització de δ k resolent el sistema lineal
una bona implementació de l'algorisme de Gauss-Newton utilitza també un algorisme de cerca lineal: en lloc de la fórmula anterior per p k +1 , s'utilitza
on el nombre α k és d'alguna manera òptim.
Altres algorismes
[modifica]La relació de recurrència del Mètode de Newton per minimitzar la funció S és
on i denoten el Jacobià i Hessiana de S respectivament. utilitzant el mètode de Newton per a la funció
obtenim la relació recurrent
Podem concloure que el mètode de Gauss-Newton és el mateix que el metodode Newton ignorant el terme Σ f H ( f ).
Altres algorismes utilitzats per a resoldre el problema dels mínims quadrats inclouen l'algorisme de Levenberg-Marquardt algorithm i de descens de gradient.
Referències
[modifica]- ↑ «Gauss-Newton algorithm for nonlinear models». Arxivat de l'original el 2019-06-10. [Consulta: 16 juny 2019].
- ↑ Stephanie. «Gauss-Newton Method: Brief Overview» (en anglès), 20-08-2017. Arxivat de l'original el 2019-06-16. [Consulta: 16 juny 2019].