De la Viquipèdia, l'enciclopèdia lliure
Aquest article o secció no
cita les fonts o necessita més referències per a la seva
verificabilitat .
A continuació es mostra una llista de límits de funcions comunes. Noti's que a i b són constant respecte x .
Sigui
lim
x
→
c
f
(
x
)
=
L
1
i
lim
x
→
c
g
(
x
)
=
L
2
llavors:
{\displaystyle {\text{Sigui }}\quad \lim _{x\to c}f(x)=L_{1}\quad {\text{ i }}\quad \lim _{x\to c}g(x)=L_{2}\quad {\text{ llavors:}}}
lim
x
→
c
[
f
(
x
)
±
g
(
x
)
]
=
L
1
±
L
2
{\displaystyle \lim _{x\to c}\,[f(x)\pm g(x)]=L_{1}\pm L_{2}}
lim
x
→
c
[
f
(
x
)
g
(
x
)
]
=
L
1
×
L
2
{\displaystyle \lim _{x\to c}\,[f(x)g(x)]=L_{1}\times L_{2}}
lim
x
→
c
f
(
x
)
g
(
x
)
=
L
1
L
2
si
L
2
≠
0
{\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}={\frac {L_{1}}{L_{2}}}\qquad {\text{ si }}L_{2}\neq 0}
lim
x
→
c
f
(
x
)
n
=
L
1
n
si
n
és un enter positiu
{\displaystyle \lim _{x\to c}\,f(x)^{n}=L_{1}^{n}\qquad {\text{ si }}n{\text{ és un enter positiu}}}
lim
x
→
c
f
(
x
)
1
n
=
L
1
1
n
si
n
és un enter positiu, i si
n
és parell, llavors
L
1
>
0
{\displaystyle \lim _{x\to c}\,f(x)^{1 \over n}=L_{1}^{1 \over n}\qquad {\text{ si }}n{\text{ és un enter positiu, i si }}n{\text{ és parell, llavors }}L_{1}>0}
lim
x
→
c
f
(
x
)
g
(
x
)
=
lim
x
→
c
f
′
(
x
)
g
′
(
x
)
si
lim
x
→
c
f
(
x
)
=
lim
x
→
c
g
(
x
)
=
0
o
±
∞
{\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}=\lim _{x\to c}{\frac {f'(x)}{g'(x)}}\qquad {\text{ si }}\lim _{x\to c}f(x)=\lim _{x\to c}g(x)=0{\text{ o }}\pm \infty }
(Regla de l'Hôpital )
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
=
f
′
(
x
)
{\displaystyle \lim _{h\to 0}{f(x+h)-f(x) \over h}=f'(x)}
lim
h
→
0
(
f
(
x
+
h
)
f
(
x
)
)
1
h
=
exp
(
f
′
(
x
)
f
(
x
)
)
{\displaystyle \lim _{h\to 0}\left({\frac {f(x+h)}{f(x)}}\right)^{\frac {1}{h}}=\exp \left({\frac {f'(x)}{f(x)}}\right)}
lim
h
→
0
(
f
(
x
(
1
+
h
)
)
f
(
x
)
)
1
h
=
exp
(
x
f
′
(
x
)
f
(
x
)
)
{\displaystyle \lim _{h\to 0}{\left({f(x(1+h)) \over {f(x)}}\right)^{1 \over {h}}}=\exp \left({\frac {xf'(x)}{f(x)}}\right)}
lim
x
→
+
∞
(
1
+
k
x
)
m
x
=
e
m
k
{\displaystyle \lim _{x\to +\infty }\left(1+{\frac {k}{x}}\right)^{mx}=e^{mk}}
lim
x
→
+
∞
(
1
+
1
x
)
x
=
e
{\displaystyle \lim _{x\to +\infty }\left(1+{\frac {1}{x}}\right)^{x}=e}
lim
x
→
+
∞
(
1
−
1
x
)
x
=
1
e
{\displaystyle \lim _{x\to +\infty }\left(1-{\frac {1}{x}}\right)^{x}={\frac {1}{e}}}
lim
x
→
+
∞
(
1
+
k
x
)
x
=
e
k
{\displaystyle \lim _{x\to +\infty }\left(1+{\frac {k}{x}}\right)^{x}=e^{k}}
lim
n
→
∞
n
n
!
n
=
e
{\displaystyle \lim _{n\to \infty }{\frac {n}{\sqrt[{n}]{n!}}}=e}
lim
n
→
∞
2
n
2
−
2
+
2
+
...
+
2
⏟
n
=
π
{\displaystyle \lim _{n\to \infty }\,2^{n}\underbrace {\sqrt {2-{\sqrt {2+{\sqrt {2+{\text{...}}+{\sqrt {2}}}}}}}} _{n}=\pi }
lim
x
→
0
(
a
x
−
1
x
)
=
ln
a
,
∀
a
>
0
{\displaystyle \lim _{x\to 0}\left({\frac {a^{x}-1}{x}}\right)=\ln {a},\qquad \forall ~a>0}
lim
x
→
c
a
=
a
{\displaystyle \lim _{x\to c}a=a}
lim
x
→
c
x
=
c
{\displaystyle \lim _{x\to c}x=c}
lim
x
→
c
a
x
+
b
=
a
c
+
b
{\displaystyle \lim _{x\to c}ax+b=ac+b}
lim
x
→
c
x
r
=
c
r
si
r
és un enter positiu
{\displaystyle \lim _{x\to c}x^{r}=c^{r}\qquad {\mbox{ si }}r{\mbox{ és un enter positiu}}}
lim
x
→
0
+
1
x
r
=
+
∞
{\displaystyle \lim _{x\to 0^{+}}{\frac {1}{x^{r}}}=+\infty }
lim
x
→
0
−
1
x
r
=
{
−
∞
,
si
r
és senar
+
∞
,
si
r
és parell
{\displaystyle \lim _{x\to 0^{-}}{\frac {1}{x^{r}}}={\begin{cases}-\infty ,&{\text{si }}r{\text{ és senar}}\\+\infty ,&{\text{si }}r{\text{ és parell}}\end{cases}}}
Funcions logarítmiques i exponencials[ modifica ]
lim
x
→
1
ln
(
x
)
x
−
1
=
1
{\displaystyle \lim _{x\to 1}{\frac {\ln(x)}{x-1}}=1}
o:
lim
x
→
0
ln
(
x
+
1
)
x
=
1
{\displaystyle \lim _{x\to 0}{\frac {\ln(x+1)}{x}}=1}
Per
a
>
1
:
{\displaystyle {\mbox{Per }}a>1:\,}
lim
x
→
0
+
log
a
x
=
−
∞
{\displaystyle \lim _{x\to 0^{+}}\log _{a}x=-\infty }
lim
x
→
∞
log
a
x
=
∞
{\displaystyle \lim _{x\to \infty }\log _{a}x=\infty }
lim
x
→
−
∞
a
x
=
0
{\displaystyle \lim _{x\to -\infty }a^{x}=0}
Si
a
<
1
:
{\displaystyle {\mbox{Si }}a<1:\,}
lim
x
→
−
∞
a
x
=
∞
{\displaystyle \lim _{x\to -\infty }a^{x}=\infty }
lim
x
→
a
sin
x
=
sin
a
{\displaystyle \lim _{x\to a}\sin x=\sin a}
lim
x
→
a
cos
x
=
cos
a
{\displaystyle \lim _{x\to a}\cos x=\cos a}
Si
x
{\displaystyle x}
està expressat en radiants :
lim
x
→
0
sin
x
x
=
1
{\displaystyle \lim _{x\to 0}{\frac {\sin x}{x}}=1}
lim
x
→
0
1
−
cos
x
x
=
0
{\displaystyle \lim _{x\to 0}{\frac {1-\cos x}{x}}=0}
lim
x
→
0
1
−
cos
x
x
2
=
1
2
{\displaystyle \lim _{x\to 0}{\frac {1-\cos x}{x^{2}}}={\frac {1}{2}}}
lim
x
→
n
±
tan
(
π
x
+
π
2
)
=
∓
∞
per tot enter
n
{\displaystyle \lim _{x\to n^{\pm }}\tan \left(\pi x+{\frac {\pi }{2}}\right)=\mp \infty \qquad {\text{per tot enter }}n}
lim
x
→
0
sin
a
x
x
=
a
{\displaystyle \lim _{x\to 0}{\frac {\sin ax}{x}}=a}
lim
x
→
0
sin
a
x
sin
b
x
=
a
b
{\displaystyle \lim _{x\to 0}{\frac {\sin ax}{\sin bx}}={\frac {a}{b}}}
lim
x
→
∞
N
/
x
=
0
per tot nombre real
N
{\displaystyle \lim _{x\to \infty }N/x=0{\text{ per tot nombre real }}N}
lim
x
→
∞
x
/
N
=
{
∞
,
N
>
0
no existeix
,
N
=
0
−
∞
,
N
<
0
{\displaystyle \lim _{x\to \infty }x/N={\begin{cases}\infty ,&N>0\\{\text{no existeix}},&N=0\\-\infty ,&N<0\end{cases}}}
lim
x
→
∞
x
N
=
{
∞
,
N
>
0
1
,
N
=
0
0
,
N
<
0
{\displaystyle \lim _{x\to \infty }x^{N}={\begin{cases}\infty ,&N>0\\1,&N=0\\0,&N<0\end{cases}}}
lim
x
→
∞
N
x
=
{
∞
,
N
>
1
1
,
N
=
1
0
,
0
<
N
<
1
{\displaystyle \lim _{x\to \infty }N^{x}={\begin{cases}\infty ,&N>1\\1,&N=1\\0,&0<N<1\end{cases}}}
lim
x
→
∞
N
−
x
=
lim
x
→
∞
1
/
N
x
=
0
per tot
N
>
1
{\displaystyle \lim _{x\to \infty }N^{-x}=\lim _{x\to \infty }1/N^{x}=0{\text{ per tot }}N>1}
lim
x
→
∞
N
x
=
{
1
,
N
>
0
0
,
N
=
0
no existeix
,
N
<
0
{\displaystyle \lim _{x\to \infty }{\sqrt[{x}]{N}}={\begin{cases}1,&N>0\\0,&N=0\\{\text{no existeix}},&N<0\end{cases}}}
lim
x
→
∞
x
N
=
∞
per tot
N
>
0
{\displaystyle \lim _{x\to \infty }{\sqrt[{N}]{x}}=\infty {\text{ per tot }}N>0}
lim
x
→
∞
log
x
=
∞
{\displaystyle \lim _{x\to \infty }\log x=\infty }
lim
x
→
0
+
log
x
=
−
∞
{\displaystyle \lim _{x\to 0^{+}}\log x=-\infty }
Ortega Aramburu , Joaquín M. Introducció a l'anàlisi matemàtica . Bellaterra: Servei de Publicacions de la Universitat Autònoma de Barcelona, 2002. ISBN 8449022711 .
Perelló , Carles . Càlcul infinitesimal . Barcelona: Enciclopèdia Catalana, 1994. ISBN 84-7739-518-7 .
Servi , L.D. «Nested square roots of 2». Amer. Math. Monthly , 110, núm. 4, 2003, pàg. 326-330.