Vés al contingut

Número cabtaxi

De la Viquipèdia, l'enciclopèdia lliure

Un número cabtaxi, en matemàtiques, el n número cabtaxi, sovint anomenat Cabtaxi(n), és definit com el més petit enter que es pot escriure en n maneres o maneres diferents (en un ordre de termes aproximats) com a suma de dos cubs positius, nuls o negatius. Els nombres cabtaxi existeixen per a tot n ≥ 1; fins a abril de 2014 es coneixen 10 nombres cabtaxi:

O en un gràfic més clar:

n Ca(n) a^3+b^3 Descobridor
1 1 1,0
2 91 3,4
6,-5
3 728 6,8
9,-1
12,-10
4 2741256 2421,19083
140,-14
168,-126
207,-183
5 6017193 166,113
180,57
185,-68
209,-146
246,-207
Randall L. Rathbun
6 1412774811 963,804
1134,-357
1155,-504
1246,-805
2115,-2004
4746,-4725
Randall L. Rathbun
7 11302198488 1926,1608
1939,1589
2268,-714
2310,-1008
2492,-1610
4230,- 4008
9492,-9450
Randall L. Rathbun
8 137513849003496 22944,50058
36547,44597
36984,44298
52164,-16422
53130,-23184
57316,-37030
97290,-92184
218316,-217350
Daniel J. Bernstein
9 424910390480793000 645210,538680
649565,532315
752409,-101409
759780,-239190
773850,-337680
834820,-539350
1417050,-1342680
3179820,-3165750
5960010,-5956020
Duncan Moore

Els nombres Cabtaxi(5), Cabtaxi(6) i Cabtaxi(7) han estat trobats per Randall L. Rathbun; i el Cabtaxi(8) per Daniel J. Bernstein, que ha demostrat que Cabtaxi(9) ≥ 1019, mentre que Duncan Moore, al 2005, trobà els nombres que correspondrien a Cabtaxi (9).

Vegeu també

[modifica]