Vés al contingut

Ortobirotonda pentagonal

De la Viquipèdia, l'enciclopèdia lliure
Infotaula de polítopOrtobirotonda pentagonal
Model 3D
TipusSòlid de Johnson
Forma de les caresTriangles equilàters i
pentàgons
Cares per vèrtex4
Vèrtexs per cara3, i 5
SimetriaD5h
Dual-
PropietatsConvex
Elements
Cares32
Arestes60
Vèrtexs30
Característica2
Més informació
MathWorldPentagonalOrthobirotunda Modifica el valor a Wikidata

En geometria, la ortobirotonda pentagonal es pot construir enganxant dues rotondes pentagonals per les cares decagonals. És un dels noranta-dos sòlids de Johnson (J34). Té simetria D5h.

Els 92 sòlids de Johnson van ser descrits 1966 per Norman Johnson i els va numerar. No va demostrar que no n'existia més que 92, però va conjecturar que no n'hi havia d'altres. Victor Zalgaller el 1969 va demostrar que la llista de Johnson era completa. S'utilitzen els noms i l'ordre donats per Johnson, i se'ls nota Jxx on xx és el nombre donat per Johnson.

Desenvolupament pla

[modifica]
Desenvolupament pla de la ortobirotonda pentagonal


Referències

[modifica]
  • Norman W. Johnson, "Convex Solids with Regular Faces", Canadian Journal of Mathematics, 18, 1966, pages 169–200. Conté l'enumeració original dels 92 sòlids i la conjectura que no n'hi ha d'altres.
  • Victor A. Zalgaller, "Convex Polyhedra with Regular Faces", 1969 : primera demostració d'aquesta conjectura.
  • Eric W. Weisstein. Johnson Solid : cada sòlid amb el seu desenvolupament

Vegeu també

[modifica]

Enllaços externs

[modifica]
  • Weistein, Eric W., Pentagonal Orthobirotunda ortobirotonda pentagonal a MathWorld. (anglès)
  • Weistein, Eric W., Johnson solid Sòlids de Johnson a MathWorld. (anglès)