Vés al contingut

Piràmide pentagonal

De la Viquipèdia, l'enciclopèdia lliure
Infotaula de polítopPiràmide pentagonal
Model 3D
TipusSòlid de Johnson
Forma de les caresTriangles equilàters i un pentàgon
Símbol de Schläfli()∨{5} Modifica el valor a Wikidata
Cares per vèrtex3 i 5
Vèrtexs per cara3 i 5
SimetriaC5v
DualElla mateixa
PropietatsConvex
Elements
Cares6
Arestes10
Vèrtexs6
Característica2
Piràmide pentagonal recta (esquerra) i obliqua (dreta).

En geometria, la piràmide pentagonal és una piràmide que té un pentàgon a la base. Aquest políedre té 6 cares, 10 arestes i 6 vèrtexs.

Si el vèrtex oposat a la base pentagonal està sobre la perpendicular traçada al centra del pentàgon llavors té simetria C5v.

Com totes les piràmides, és dual de si mateixa.

Àrea i volum

[modifica]

L'àrea d'una piràmide pentagonal d'altura amb base pentagonal regular de costat és [1]

I el seu volum és [1]

Sòlid de Johnson

[modifica]

Si les cares triangulars de la piràmide són triangles equilàters, llavors és un dels noranta-dos sòlids de Johnson (J₂).

L'altura de la pirámide d'aresta a és [1][2]

L'àrea (A) i el volum (V) de la piràmide són

Desenvolupament pla

[modifica]
Desenvolupament pla de la piràmide pentagonal


Referències

[modifica]
  1. 1,0 1,1 1,2 Sapiña, R. «Àrea i volum d'una piràmide pentagonal i del sòlid de Johnson J₂» (en castellà). Problemas y ecuaciones. ISSN: 2659-9899 [Consulta: 29 juny 2020].
  2. Weisstein, Eric W. «Piràmide pentagonal» (en anglès). [Consulta: 29 juny 2020].
  • Norman W. Johnson, "Convex Solids with Regular Faces", Canadian Journal of Mathematics, 18, 1966, pages 169–200. Conté l'enumeració original dels 92 sòlids i la conjectura que no n'hi ha d'altres.
  • Victor A. Zalgaller, "Convex Polyhedra with Regular Faces", 1969 : primera demostració d'aquesta conjectura.
  • Eric W. Weisstein. Johnson Solid : cada sòlid amb el seu desenvolupament

Vegeu també

[modifica]

Enllaços externs

[modifica]
  • Weistein, Eric W., Pentagonal pyramid piràmide pentagonal a MathWorld. (anglès)
  • Weistein, Eric W., Johnson solid Sòlids de Johnson a MathWorld. (anglès)