Robot cilíndric
Un robot cilíndric és un robot industrial format per una articulació de revolució, generalment la primera, i dues articulacions prismàtiques, amb l'eix de rotació i les direccions de translació disposades seguint un sistema de coordenades cilíndriques.[1][2][3]
Aquest tipus de robot ofereix una estructura molt rígida, fàcil de programar i molt apta per accedir a cavitats. Per altra banda, un desavantatge d'aquesta configuració és la necessitat d'espai al darrere del braç per quan l'última articulació prismàtica retrocedeix.[4]
Aquests robots són particularment adequats per subministrar altres màquines o aplicacions de col·locació en general. Es fan servir majoritàriament a l'Àsia on generalment s'empren a la producció electrònica, amb un 90% dels robots cilíndrics treballant en aquest sector.[4] Tot i això al Japó també s'han usat a l'agricultura, per exemple recollint maduixes.[5] Segons la Federació Internacional de Robòtica, l'any 2013, els robots cilíndrics ocupaven una quota de mercat del dos per cent sobre el total de robots industrials venuts.[4]
Cinemàtica
[modifica]Les equacions de la cinemàtica directa d'un manipulador cilíndric es poden deduir seguint el conveni de Denavit-Hartenberg. A la imatge adjunta hi ha l'abstracció d'un manipulador cilíndric RPP. Es pot establir l'origen de coordenades a la base, a l'articulació número 0. La direcció de l'eix z ha de seguir l'element, mentre que els eixos x i y són arbitraris seguint la regla de la mà dreta.[6]
Com que els eixos z0 i z1 coincideixen es poden col·locar les següents coordenades a l'articulació 1, seguint el mateix raonament. Finalment, l'últim origen de coordenades se situa a la intersecció de z₂ i z1, la direcció i sentit de x₂ es tria en paral·lel a x1 per aconseguir que θ₂ s'anul·li.
Amb els sistemes de coordenades assignats, es pot definir la taula amb els paràmetres de Denavit-Hartenberg, on els valors marcats amb un asterisc són les distàncies o angles variables:[3]
Element | ai | αi | di | θi |
---|---|---|---|---|
1 | 0 | 0 | d1 | θ1* |
2 | 0 | -90 | d₂* | 0 |
3 | 0 | 0 | d₃* | 0 |
Aleshores, les matrius de transformació homogènies per cada articulació són:[7]
Així, les equacions de la cinemàtica directa són:[8]
On .
Per altra banda, la solució de la cinemàtica inversa permet calcular quins angles i distàncies han de recórrer les articulacions per tal d'arribar a una posició del terminal donada. Així, la posició final del terminal és donada com a O₃=[x₃,y₃,z₃] i s'ha de determinar l'angle θ1 i les distàncies d₂ i d₃ per tal d'assolir la posició.
Per un robot cilíndric es pot trobar de forma geomètrica. Observant el tercer element des de dalt es pot determinar l'angle:[9]
Com que l'única articulació que afecta a l'eix y és d₂, també és immediat que:
I finalment, per trobar com s'ha d'estendre l'articulació d₃ es pot aplicar el teorema de Pitàgores al triangle format vist des de dalt:
Matemàticament la solució presentada no és única. Hi ha una segona solució que consisteix a rotar la base en sentit contrari a la posició final del terminal i fer anar enrere el tercer element fins a arribar a la posició final. Tot i que teòricament també s'assoliria la posició, a la realitat podria ser impossible depenent de les limitacions mecàniques del robot.[9]
Referències
[modifica]- ↑ Blas i Abante et al., 1991, p. 14.
- ↑ Riba i Romeva, 1998, p. 36.
- ↑ 3,0 3,1 3,2 Spong, Hutchinson i Vidyasagar, 2005, p. 77.
- ↑ 4,0 4,1 4,2 Wilson, 2015, p. 28.
- ↑ Siciliano i Khatib, 2016, p. 1477.
- ↑ Spong, Hutchinson i Vidyasagar, 2005, p. 76.
- ↑ Spong, Hutchinson i Vidyasagar, 2005, p. 84.
- ↑ Spong, Hutchinson i Vidyasagar, 2005, p. 78.
- ↑ 9,0 9,1 «Inverse Kinematics». Burton Ma. Department of Electrical Engineering and Computer Science at York University, 29-01-2018. [Consulta: 31 agost 2019].
Bibliografia
[modifica]- Blas i Abante, Marta; Mateu i Martínez, M. Rosa; Picó i Garcia, Rosa Maria; Riba i Romeva, Carles. «Diccionari de robòtica industrial» p. 18, 1991. [Consulta: 29 agost 2019].
- Riba i Romeva, Carles. «Els robots industrials I. Característiques» p. 76, 1998. [Consulta: 29 agost 2019].
- Siciliano, Bruno; Khatib, Oussama. Springer Handbook of Robotics 2nd Edition. Berlin Heidelberg: Springer, 2016, p. 2259. ISBN 978-3-319-32550-7 [Consulta: 29 agost 2019].
- Spong, Mark W.; Hutchinson, Seth; Vidyasagar, M. Robot Modeling and Control. John Wiley & Sons, Inc., 2005, p. 407. ISBN 978-0471649908 [Consulta: 29 agost 2019].
- Wilson, Mike. Implementation of robot systems. An introduction to robotics, automation, and successful systems integration in manufacturing. Elsevier, 2015, p. 229. ISBN 978-0-124-04733-4 [Consulta: 29 agost 2019].