Teorema de Siegel–Walfisz
En teoria analítica de nombres, el teorema de Siegel–Walfisz va ser derivat per Arnold Walfisz com a aplicació del teorema de Carl Ludwig Siegel en nombres primers en una progressió aritmètica.[1]
Enunciat del teorema de Siegel–Walfisz
[modifica]Es defineix
on denota la funció de von Mangoldt i φ és la funció φ d'Euler.
El teorema expressa que, donat un nombre real qualsevol N, existeix una constant positiva CN que depèn únicament de N tal que
sempre que (a, q) = 1 i
La constant CN no és efectiva computacionalment perquè el teorema Siegel és inefectiu.
Del teorema es pot deduir la següent forma del teorema dels nombres primers per a progressions aritmètiques: si, per (a,q)=1, mitjançant denotem el nombre de primers menor o iguals que x que són congruents amb a mod q, llavors
on N, a, q, CN i φ són definits com en el teorema, i Li denota la integral logarítmica desplaçada.
Referències
[modifica]- ↑ Walfisz, Arnold «Zur additiven Zahlentheorie. II». Mathematische Zeitschrift, 40, 1, 1936, pàg. 592–607. DOI: 10.1007/BF01218882. (en alemán)