Vés al contingut

Valor principal

De la Viquipèdia, l'enciclopèdia lliure
Aquest article tracta sobre l'ús del terme valor principal en la descripció d'integrals impròpies . Vegeu-ne altres significats a «valor principal de Cauchy».

A l'anàlisi complexa, els valors principals de la funció de diversos valors són els valors al llarg d'una subdivisió escollida d'aquesta funció, pel que és l'únic valor.

Motivació

[modifica]

Considereu el logaritme complex de la funció log z. Es defineix com el nombre complex w tal com

Ara, per exemple, diguem que volem trobar el logaritme i. Això vol dir que volem resoldre

per w. Clarament iπ/2 és una solució. Però és l'única solució?

Per descomptat, hi ha altres solucions, cosa que s'evidencia tenint en compte la posició de i en el pla complex i, en particular, el seu argument arg i. Podem girar en sentit antihorari els radians π/2 d'1 fins a arribar inicialment a i, però si girem fins a un altre 2π arribarem a i de nou. Per tant, podem concloure que i(π/2 + 2π) és també una solució pel nostre log i. Es fa evident que podem afegir qualsevol múltiple de 2πi a la nostra solució inicial per obtenir tots els valors de log i.

Vegeu també

[modifica]