Distribució de probabilitat envoltada
En la teoria de la probabilitat i l'estadística direccional, una distribució de probabilitat envoltada és una distribució de probabilitat contínua que descriu els punts de dades que es troben en una unitat n-esfera. En una dimensió, una distribució envoltada consta de punts del cercle unitari. Si és una variació aleatòria en l'interval amb funció de densitat de probabilitat (PDF) , llavors és una variable circular distribuïda segons la distribució envoltada i és una variable angular a l'interval distribuït segons la distribució embolicada .[1]
Qualsevol funció de densitat de probabilitat a la línia es pot "embolicar" al voltant de la circumferència d'un cercle de radi unitat.[2] És a dir, el PDF de la variable embolicada
en algun interval de longitud
és
que és una suma periòdica de períodes . L'interval preferit és generalment per quin .[3]
Teoria
[modifica]En la majoria de les situacions, un procés que implica estadística circular produeix angles () que es troben a l'interval , i es descriuen per una funció de densitat de probabilitat "desembolicada" . Tanmateix, una mesura donarà un angle que es troba en algun interval de longitud (per exemple, 0 a ). En altres paraules, una mesura no pot dir si l'angle real o un angle embolicat , on és un nombre enter desconegut, s'ha mesurat.[4]
Si volem calcular el valor esperat d'alguna funció de l'angle mesurat serà:
Podem expressar la integral com una suma d'integrals en períodes de :
Canviar la variable d'integració a i intercanviant l'ordre d'integració i suma, tenim
on és el PDF de la distribució embolicada i és un altre nombre enter desconegut . El nombre enter desconegut introdueix una ambigüitat en el valor esperat de , similar al problema de calcular la mitjana angular. Això es pot resoldre introduint el paràmetre , ja que té una relació inequívoca amb l'angle real :
Exemple en termes de funcions característiques
[modifica]Una distribució embolicada fonamental és la pinta de Dirac, que és una funció delta de Dirac embolicada:
- Utilitzant la funció delta, es pot escriure una distribució embolicada general
Referències
[modifica]- ↑ «Wrapped distribution - Alchetron, The Free Social Encyclopedia» (en anglès). https://alchetron.com,+18-01-2016.+[Consulta: 18 juny 2023].
- ↑ Mardia, Kantilal. Directional Statistics (en anglèss). Wiley, 1999. ISBN 978-0-471-95333-3.
- ↑ «Variance and standard deviation for wrapped distributions» (en anglès). https://math.stackexchange.com.+[Consulta: 18 juny 2023].
- ↑ «Wrapped Circular Statistical Distributions and Applications» (en anglès). https://www.researchgate.net.+[Consulta: 18 juny 2023].