De la Viquipèdia, l'enciclopèdia lliure
Comparació de la convergència del producte de Wallis (asteriscs liles) i diverses sèries infinites per π. Sn és l'aproximació després de prendre n termes. Cada subgràfica amplia la precisió de la imatge en un factor de 10.
En matemàtiques , el producte de Wallis és una expressió que s'utilitza per representar el valor de π que va ser descoberta pel matemàtic anglès John Wallis el 1655 i que estableix queː[ 1]
∏
n
=
1
∞
(
2
n
2
n
−
1
⋅
2
n
2
n
+
1
)
=
2
1
⋅
2
3
⋅
4
3
⋅
4
5
⋅
6
5
⋅
6
7
⋅
8
7
⋅
8
9
⋯
=
π
2
{\displaystyle \prod _{n=1}^{\infty }\left({\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}\right)={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot {\frac {8}{7}}\cdot {\frac {8}{9}}\cdots ={\frac {\pi }{2}}}
Abans de res, s'ha de considerar que les arrels de sin(x)/x són ±nπ, on n = 1, 2, 3.... Llavors, es pot expressar el sinus com un producte infinit de factors lineals d'arrelsː
sin
(
x
)
x
=
k
(
1
−
x
π
)
(
1
+
x
π
)
(
1
−
x
2
π
)
(
1
+
x
2
π
)
(
1
−
x
3
π
)
(
1
+
x
3
π
)
{\displaystyle {\frac {\sin(x)}{x}}=k\left(1-{\frac {x}{\pi }}\right)\left(1+{\frac {x}{\pi }}\right)\left(1-{\frac {x}{2\pi }}\right)\left(1+{\frac {x}{2\pi }}\right)\left(1-{\frac {x}{3\pi }}\right)\left(1+{\frac {x}{3\pi }}\right)}
on k és una constant.
Per trobar la constant k , es pren el límit en ambdós costatsː
lim
x
→
0
sin
(
x
)
x
=
lim
x
→
0
(
k
(
1
−
x
π
)
(
1
+
x
π
)
(
1
−
x
2
π
)
(
1
+
x
2
π
)
(
1
−
x
3
π
)
(
1
+
x
3
π
)
⋯
)
=
k
{\displaystyle \lim _{x\to 0}{\frac {\sin(x)}{x}}=\lim _{x\to 0}\left(k\left(1-{\frac {x}{\pi }}\right)\left(1+{\frac {x}{\pi }}\right)\left(1-{\frac {x}{2\pi }}\right)\left(1+{\frac {x}{2\pi }}\right)\left(1-{\frac {x}{3\pi }}\right)\left(1+{\frac {x}{3\pi }}\right)\cdots \right)=k}
Sabent que:
lim
x
→
0
sin
(
x
)
x
=
1
{\displaystyle \lim _{x\to 0}{\frac {\sin(x)}{x}}=1}
Es fa k=1. S'obté la fórmula d'Euler-Wallis per al sinus:
sin
(
x
)
x
=
(
1
−
x
π
)
(
1
+
x
π
)
(
1
−
x
2
π
)
(
1
+
x
2
π
)
(
1
−
x
3
π
)
(
1
+
x
3
π
)
⋯
{\displaystyle {\frac {\sin(x)}{x}}=\left(1-{\frac {x}{\pi }}\right)\left(1+{\frac {x}{\pi }}\right)\left(1-{\frac {x}{2\pi }}\right)\left(1+{\frac {x}{2\pi }}\right)\left(1-{\frac {x}{3\pi }}\right)\left(1+{\frac {x}{3\pi }}\right)\cdots }
sin
(
x
)
x
=
(
1
−
x
2
π
2
)
(
1
−
x
2
4
π
2
)
(
1
−
x
2
9
π
2
)
⋯
{\displaystyle {\frac {\sin(x)}{x}}=\left(1-{\frac {x^{2}}{\pi ^{2}}}\right)\left(1-{\frac {x^{2}}{4\pi ^{2}}}\right)\left(1-{\frac {x^{2}}{9\pi ^{2}}}\right)\cdots }
Fent x=π/2, s'obté:
1
π
/
2
=
(
1
−
1
2
2
)
(
1
−
1
4
2
)
(
1
−
1
6
2
)
⋯
=
∏
n
=
1
∞
(
1
−
1
4
n
2
)
{\displaystyle {\frac {1}{\pi /2}}=\left(1-{\frac {1}{2^{2}}}\right)\left(1-{\frac {1}{4^{2}}}\right)\left(1-{\frac {1}{6^{2}}}\right)\cdots =\prod _{n=1}^{\infty }(1-{\frac {1}{4n^{2}}})}
π
2
=
∏
n
=
1
∞
(
4
n
2
4
n
2
−
1
)
{\displaystyle {\frac {\pi }{2}}=\prod _{n=1}^{\infty }({\frac {4n^{2}}{4n^{2}-1}})}
=
∏
n
=
1
∞
(
2
n
2
n
−
1
⋅
2
n
2
n
+
1
)
=
2
1
⋅
2
3
⋅
4
3
⋅
4
5
⋅
6
5
⋅
6
7
⋯
{\displaystyle =\prod _{n=1}^{\infty }\left({\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}\right)={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdots }