Sigui espai mesurable, és a dir, és un conjunt arbitrari i una -àlgebra sobre . Es diu que dues mesures i sobre aquest espai són mútuament singulars [1] si existeix un conjunt tal que on és el complementari de . S'escriu . En paraules, si una mesura pren valors en un conjunt que té mesura zero per l'altra mesura i recíprocament. Malgrat la simetria de la definició, és molt habitual dir que la mesura és singular respecte .
Quan la mesura és una probabilitat, és a dir, , és diu que és una distribució singular respecte de . Un cas especialment important és quan , és una probabilitat i és la mesura de Lebesgue, que designarem per .
Exemples.
- 1. Sigui la distribució de Poisson, que pren valors sobre els nombres natural . Llavors , ja que
.
- En general, totes les distribucions discretes són singulars amb la mesura de Lebesgue.
- 2. Però és realment notable l'existència de distribucions de probabilitat que prenen valors en un conjunt amb la potència del continu (és a dir, amb el mateix cardinal que ) i que són singulars respecte a la mesura de Lebesgue, com la distribució de Cantor.
Mesura absolutament contínua respecte d'una altra
La noció antitètica amb la singularitat és la continuïtat absoluta [1]:
És diu que una mesura és absolutament contínua respecte [1] si per qualsevol tal que tenim que . S'escriu .
Tal com diu Halmos[2], la singularitat entre dues mesures és una forma extrema de no continuïtat absoluta.
Exemple. Sigui una funció mesurable no negativa, . Definim la funció de conjunt Aleshores és una mesura [1] i s'anomena la seva funció de densitat. A més, atès que la integral sobre un conjunt de mesura zero és zero, tindrem que i per tant és absolutament contínua respecte .
Per concretar més l'exemple, siguin , és la -àlgebra de Borel sobre i la mesura de Lebesgue. Sigui la distribució normal estàndard , és a dir, la mesura definida perAleshores .
Nota. El famós teorema de Radon-Nikodym estableix el recíproc de l'exemple anterior, sotmès a que les mesures implicades siguin -finites.
Descomposició de Lebesgue
Sigui un espai de mesura tal que sigui -finita. Considerem una altra mesura -finita. Aleshores existeixen dues mesures (úniques) i , amb i , tals que Vegeu Royden [3].
Parts discreta i contínua d'una distribucions de probabilitat a
[modifica]
Aplicant la nomenclatura de les mesures sobre [4] a una distribucions de probabilitat sobre , es diu que és
- discreta si existeix un conjunt finit o numerable tal que .
- contínua si per a qualsevol .
- singular si existeix un conjunt tal que i on és la mesura de Lebesgue a .
- absolutament contínua si per qualsevol conjunt tal que , tenim que .
D'acord amb el Teorema de Radon-Nikodym, si és absolutament contínua, aleshores existeix una funció mesurable tal que La funció s'anomena la funció de densitat de .
Si (respectivament, i ) llacors (respectivament , o ) s'anomena la part discreta (resp. la part contínua singular o la part absolutament contínua de) de
Distribucions singulars. Parts discreta i contínua d'una distribució de probabilitat a
[modifica]
Recordem la nomenclatura estàndard de les mesures sobre [4]: una mesura es diu que és
- discreta si existeix un conjunt finit o numerable tal que , on és el complementari del conjunt .
- contínua si per a qualsevol .
- singular si existeix un conjunt tal que i on és la mesura de Lebesgue a .
- absolutament contínua si per qualsevol conjunt tal que , tenim que .
Quan és discreta (respectivament absolutament contínua) també es diu que és purament discreta (resp. purament absolutament contínua). Cal notar que les definicions de continuïtat i singularitat no són incompatibles, sinó que hi ha mesures alhora contínues i singulars; la distribució de Cantor n'és un exemple. Una mesura contínua i singular es diu que és purament contínua singular.
Descomposició de mesures. [4] Existeixen tres mesures, discreta, contínua singular i absolutament contínua tals queAquestes mesures són úniques.
La mesura (respectivament i ) s'anomenen la part discreta (resp. part contínua singular i part absolutament contínua) de . La mesura s'anomena la part contínua de . Òbviament, aquestes mesures poden ser nul·les: per exemple, si és discreta, aleshores i .
Finalment, d'acord amb el Teorema de Radon-Nikodym, si és -finita (en particular, si és finita), aleshores existeix una funció mesurable tal que La funció s'anomena la funció de densitat de .
Adaptació a les distribucions de probabilitat. Totes aquestes definicions i propietats s'adapten directament al cas de les distribucions de probabilitat sobre . Així, per exemple, es diu que una distribució de probabilitat sobre és una distribució discreta si existeix un conjunt finit o numerable tal que . O que és una distribució singular si existeix un conjunt tal que i .
- ↑ 1,0 1,1 1,2 1,3 Royden, H. L.. Real analysis. 3rd ed. New York: Macmillan, 1988, p. 276. ISBN 0-02-404151-3.
- ↑ Halmos, Paul R. Measure theory. New York: Van Nostrand, 1950, p. 126. ISBN 0-387-90088-8.
- ↑ Royden, H. L.. Real analysis. 3rd ed. New York: Macmillan, 1988, p. 278. ISBN 0-02-404151-3.
- ↑ 4,0 4,1 4,2 Sato, Ken-iti; 佐藤, 健一. Lévy processes and infinitely divisible distributions. Cambridge, U.K.: Cambridge University Press, 1999, p. 174. ISBN 0-521-55302-4.