Vés al contingut

Conjectura de Dyson

De la Viquipèdia, l'enciclopèdia lliure
Freeman Dyson, 2005

En matemàtiques, la conjectura de Dyson[1] és una conjectura sobre el terme constant de certs polinomis de Laurent, demostrada per Wilson i Gunson. Andrews ho va generalitzar a la conjectura de q-Dyson, demostrada per Zeilberger i Bressoud i de vegades anomenat teorema de Zeilberger-Bressoud. Macdonald el va generalitzar a sistemes arrels més generals amb la conjectura de terme constant de Macdonald, demostrada per Cherednik.

La conjectura de Dyson

[modifica]

La conjectura de Dyson afirma que el polinomi de Laurent

té el terme constant

Wilson i Gunson[2] van demostrar la conjectura per primera vegada de manera independent.[3] Després, Good[4] va trobar una prova curta en observar que els polinomis de Laurent, i per tant els seus termes constants, satisfan les relacions de recursió

En el cas n = 3 de la conjectura de Dyson es desprèn de la identitat de Dixon.

Sills, Zeilberger[5] i Sills[6] va utilitzar un ordinador per trobar expressions per a coeficients no constants de Dyson del polinomi Laurent.

La integral de Dyson

[modifica]

Quan tots els valors ai són igual a β/2, el terme constant en la conjectura de Dyson és el valor de la integral de Dyson

La integral de Dyson és un cas especial de la integral de Selberg després d'un canvi de variable, i val

que dona una prova més de la conjectura de Dyson en aquest cas especial.

La conjectura de q-Dyson

[modifica]

Andrews[7] va trobar un q-anàleg de la conjectura de Dyson, afirmant que el terme constant de

és

Aquí (a;q)n és el símbol q-Pochhammer.

La conjectura de Macdonald

[modifica]

Macdonald[8] va estendre la conjectura a sistemes arrels finits o afins arbitraris, amb la conjectura original de Dyson corresponent al cas del sistema radicular An-1 i la conjectura d'Andrews corresponent al sistema arrel afí Un-1. Macdonald va reformular aquestes conjectures com a conjectures sobre les normes dels polinomis de Macdonald. Cherednik[9] va provar les conjectures de Macdonald amb àlgebres de Hecke doblement afines.

La forma de Macdonald de la conjectura de Dyson per a sistemes radicals del tipus BC està estretament relacionada amb la integral de Selberg.

Referències

[modifica]

Bibliografia

[modifica]