Vés al contingut

Sistema sexagesimal

De la Viquipèdia, l'enciclopèdia lliure

El sistema sexagesimal és un sistema de representació numèrica (sistema de numeració) en base seixanta.

Emprat originàriament pels sumeris entre el 3000 aC i el 2000 aC es va transmetre després als babilonis.

L'avantatge d'aquesta base (60 = 3x4x5) és la facilitat de càlcul pel gran nombre de divisors que té {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60}

Encara l'utilitzem en mesurar el temps, on els minuts i segons són la primera i la segona parts fraccionàries de l'hora en base 60 (1 hora = 60 minuts = 3600 segons).

També el fem servir en la mesura dels angles: prenent l'angle del triangle equilàter com a patró, el més fàcil de reproduir amb fidelitat, un grau (del llatí gradus: graó) n'és la divisió sexagesimal. El grau el subdividim en minuts i segons sexagesimals.

Fraccions

[modifica]

El sistema sexagesimal és força bo per fer fraccions. Heus aquí un exemple de fraccions i la xifra sexagesimal equivalent

  • el caràcter punt-i-coma ; indica el punt sexagesimal
  • el caràcter coma , separa posicions de dígits sexagesimals
 1/2 = 0; 30
 1/3 = 0; 20
 1/4 = 0; 15
 1/5 = 0; 12
 1/6 = 0; 10
 1/8 = 0; 7, 30
 1/9 = 0; 6, 40
 1/10 = 0; 6
 1/12 = 0; 5
 1/15 = 0; 4
 1/16 = 0; 3, 45
 1/18 = 0; 3, 20
 1/20 = 0; 3
 1/30 = 0; 2
 1/40 = 0; 1, 30
 1/50 = 0; 1, 12
 1/ 1, 00 = 0; 1 (1/60 en decimal)

Representació sumèria

[modifica]
Signes numèrics sumeris - Donald Allen - Babilonian Mathematics

Els Sumeris feien servir cons i cercles per indicar els nombres que descriuen quantitats discretes.

La unitat es representava per un "con" petit en forma de U tancada per dalt.

Deu cons equivalien a un cercle petit.

Seixanta (sis cercles) es representaven per un con gran.

Deu vegades seixanta era un con gran amb un cercle petit a dins.

Seixanta vegades seixanta era un cercle gran.

Deu vegades el cercle gran es representava afegint-hi a dins un cercle petit.

Representació cuneïforme

[modifica]

Cap al final del tercer mil·lenni aC la representació es va substituir per equivalents cuneïformes per a ser fets amb els mateixos estilets d'escriure text.

Els cons (de valor 1) van derivar en un marca vertical similar a la Y i els cercles (de valor 10) en una marca angular similar a <.

I es va introduir la representació posicional.

El zero no es representava o s'hi deixava un espai.

Un nombre inferior a 60, per exemple 39 es representava repetint les marques (3 < i 9 Y) mencionades.

 YYY 
 <<< YYY
 YYY

Per a representar nombres de més dígits sexagesimals (a partir de 60) se separaven els dígits en columnes.

Per exemple 165 = 2x60 + 45, en sexagesimal tindria els dígits: (2, 45) que en representació cuneïforme seria

 YY
 YY <<<< YYY

Comptar amb els dits

[modifica]

Als seus orígens, aquest sistema va ser ideat per fer comptes amb els dits, prenent com a unitat la falange dels dits de la mà. El càlcul es feia de la següent manera:

1 falange = 1 unitat

Per tant,

1 dit = 3 unitats

Si fem servir el dit polze de la mà dreta com a índex, passant-lo per damunt les falanges dels altres dits, per fer el compte de la mà esquerra, (3 falanges x 4 dits) surt l'equivalència

1 mà esquerra = 12 unitats

Quan passem a comptar els dits de la mà dreta i apliquem l'equivalència anterior a cada dit de la mà dreta, (12 unitats x 5 dits) surt que

1 mà dreta = 60 unitats

Enllaços externs

[modifica]