Usuari:Jaumellecha/proves4
Els compostos d'organozinc (o compostos orgànics del zinc) són compostos químics que contenen un enllaç químic entre carboni (C) i zinc (Zn) (enllaç C-Zn).
La química de l'orgazinc és la ciència corresponent que explora les propietats, l'estructura i la reactivitat d'aquests compostos.[1][2][3][4]
Els compostos organozinc es van trobar entre els primers compostos organometàl·lics fabricats. Són menys reactius que molts altres reactius organometàl·lics anàlegs, com ara els reactius de Grignard i organoliti.
El 1848, Edward Frankland va preparar el primer compost organozinc, el dietilzinc, escalfant iodur d'etil en presència de zinc metàl·lic.[5] Aquesta reacció va produir un líquid incolor volàtil que es va cremar espontàniament en contacte amb l'aire. A causa de la seva naturalesa pirofòrica, els compostos organozinc es preparen generalment mitjançant tècniques sense aire.
Són inestables cap als dissolvents pròtics. Per a molts propòsits es preparen in situ, no aïllades, però moltes s'han aïllat com a substàncies pures i s'han caracteritzat a fons.[6]
Els organozincs es poden classificar segons el nombre de substituents de carboni que estan units al metall:[3]
- Diorganozinc (R2Zn): una classe de compostos organozinc en què dos lligands alquil. Aquests es poden dividir en subclasses en funció dels altres lligands units
- Heterolèptic (RZnX): Compostos als quals un lligand electronegatiu o monoaniònic (X), com un halur, està unit al centre de zinc amb un altre substituent alquil o aril (R).
- Compostos organozincs iònics: aquesta classe es divideix en organozincats (RnZn−) i cations organozincs (RZnLn+).
Enllaç
[modifica]In its coordination complexes zinc(II) adopts several coordination geometries, commonly octahedral, tetrahedral, and various pentacoordinate geometries. These structural flexibility can be attributed to zinc's electronic configuration [Ar]3d104s2. The 3d orbital is filled, and therefore, ligand field effects are nonexistent. Coordination geometry is thus determined largely by electrostatic and steric interactions.[3]Organozinc compounds usually are two- or three-coordinate, reflecting the strongly donating property of the carbanionic ligands.
Typical diorganozinc complexes have the formula R2Zn. Dialkylzinc compounds are monomeric with a linear coordination at the zinc atom.[7] A polar covalent bond exists between carbon and zinc, being polarized toward carbon due to the differences in electronegativity values (carbon: 2.5 & zinc: 1.65). The dipole moment of symmetric diorganozinc reagents can be seen as zero in these linear complexes, which explains their solubility in nonpolar solvents like cyclohexane. Unlike other binary metal alkyls, the diorganozinc species show a low affinity for complexation with ethereal solvent. Bonding in R2Zn is described as employing sp-hybridized orbitals on Zn.[3]
-
Reactius de diorganozinc saturats amb grups arílics pont
These structures cause zinc to have two bonding d-orbitals and three low-lying non-bonding d-orbitals (see non-bonding orbital), which are available for binding. When zinc lacks electron donating ligands it is unable to obtain coordination saturation, which is a consequence of the large atomic radius and low electron deficiency of zinc. Therefore, it is rare for bridging alkyl or aryl groups to occur due to the weak electron deficiency of the zinc atom. Although, it does occur in some cases such as Ph2Zn (Shown below) and which halogens are the organozinc can form metal clusters (see cluster chemistry). When a halogen ligand is added to the zinc atom both the acceptor and donor character of zinc is enhanced allowing for aggregation.[3]
Síntesi
[modifica]Several methods exist for the generation of organozinc compounds. Commercially available diorganozinc compounds are dimethylzinc, diethylzinc and diphenylzinc. These reagents are expensive and difficult to handle. In one study[Nota 1][8] the active organozinc compound is obtained from much cheaper organobromine precursors:
-
Addició de difenilzinc a un aldehid (equació 2.1)
De zinc metall
[modifica]Frankland's original synthesis of diethylzinc involves the reaction of ethyl iodide with zinc metal. The zinc must be activated to facilitate this redox reaction. One of such activated form of zinc employed by Frankland is zinc-copper couple.[5]
- 2 EtI + 2 Zn0 → Et
2Zn + ZnI
2 (Equació 2.2)
Riecke zinc, produced by in situ reduction of ZnCl2 with potassium, is another activated form of zinc. This form has proven useful for reactions such as Negishi coupling and Fukuyama coupling. Formation of organozinc reagents is facilitated for alkyl or aryl halides bearing electron-withdrawing substituents, e.g., nitriles and esters.[9][10]
- (equació 2.3)
-
Ús de l'addició oxidativa per obtenir precursors d'acoblament de Negishi (Equació 2.4)
Intercanvi de grups funcionals
[modifica]The two most common zinc functional group interconversion reactions are with halides and boron, which is catalyzed by copper iodide (CuI) or base. The boron intermediate is synthesized by an initial hydroboration reaction followed by treatment with diethyl zinc. This synthesis shows the utility of organozinc reagents by displaying high selectivity for the most reactive site in the molecule, as well as creating useful coupling partners.[11]
-
Intercanvi de grups funcionals d'organozinc amb metalls o reactius de bor (Equació 2.5)
This group transfer reaction can be used in allylation, or other coupling reactions (such as Negishi coupling).[12]
-
Hiroshi Naka i els seus companys van utilitzar aquesta reacció de transferència grupal per arribar a l'intermedi clau (Equació 2.6)
Compostos de β-silil diorganozinc
[modifica]One of the major drawbacks of diorganozinc alkylations is that only one of the two alkyl substituents is transferred. This problem can be solved by using Me3SiCH2- (TMSM), which is a non-transferable group.[13]
- (Equació 2.7)
Transmetal·lació
[modifica]Transmetallation is similar to the interconversions displayed above zinc can exchange with other metals such as mercury, lithium, copper, etc. One example of this reaction is the reaction of diphenylmercury with zinc metal to form diphenylzinc and metallic mercury:
- HgPh2 + Zn → ZnPh2 + Hg (Equació 2.8)
The benefit of transmetalling to zinc it is often more tolerant of other functional groups in the molecule due to the low reactivity which increases selectivity.[14]
- In the synthesis of Maoecrystal V, a directed ortho metalation gives the initial aryl-lithium species, which is transmetallated to the desired arylzinc compound. The arylzinc compound is significantly less reactive than the aryl-lithium species and thus better tolerates the functionality in the subsequent coupling with methyl chlorooxaloacetate. Esters are significantly stable against organozinc reagents.[15]
-
La síntesi de Zakarian de Maoecrystal V va utilitzar una transmetal·lació de zinc en fase inicial per tolerar la funcionalitat (Equació 2.9)
-
Síntesi d'organozinc per inserció directa (Equació 2.10)
- In this method zinc is activated by 1,2-dibromoethane and trimethylsilyl chloride. A key ingredient is lithium chloride which quickly forms a soluble adduct with the organozinc compound thus removing it from the metal surface.
Reaccions
[modifica]In many of their reactions organozincs appear as intermediates.
- In the Frankland–Duppa reaction (1863) an oxalate ester (ROCOCOOR) reacts with an alkyl halide R'X, zinc and hydrochloric acid to the α-hydroxycarboxylic esters RR'COHCOOR.
Reacció de Reformatsky
[modifica]This organic reaction can be employed to convert α-haloester and ketone or aldehyde to a β-hydroxyester. Acid is needed to protonate the resulting alkoxide during work up. The initial step is an oxidative addition of zinc metal into the carbon-halogen bond, thus forming a carbon-zinc enolate. This C-Zn enolate can then rearrange to the Oxygen-Zinc enolate via coordination. Once this is formed the other carbonyl containing starting material will coordinate in the manner shown below and give the product after protonation.[17] The benefits of the Reformatsky reaction over the conventional aldol reaction protocols is the following:
- Allows for exceedingly derivatized ketone substrates
- The ester enolate intermediate can be formed in the presence of enolizable moieties
- Well suited for intramolecular reactions
Below shows the six-membered transition state of the Zimmerman–Traxler model (Chelation Control, see Aldol reaction), in which R3 is smaller than R4.[18]
-
Esquema mecanicista bàsic de la reacció de Reformatsky (Equació 3.1)
The Reformatsky reaction has been employed in numerous total syntheses such as the synthesis of C(16),C(18)-bis-epi-cytochalasin D:[19]
-
La síntesi total de E. Vedejs de C(16),C(18)-bis-epi-citocalasina D utilitza una reacció de Reformatsky en fase tardana per accedir al producte natural (Equació 3.2)
The Reformatsky reaction even allows for with zinc homo-enolates.[20] A modification of the Reformatsky reaction is the Blaise reaction.[18]
-
Esquema per a la reacció de Blaise d'organozinc, que utilitza un haloèster alfa i un grup ciano funcionalitzat (Equació 3.3)
Reacció de Simmons-Smith
[modifica]The Simmons–Smith reagent is used to prepare cyclopropanes from olefin using methylene iodide as the methylene source. The reaction is effected with zinc. The key zinc-intermediate formed is a carbenoid (iodomethyl)zinc iodide which reacts with alkenes to afford the cyclopropanated product. The rate of forming the active zinc species is increased via ultrasonication since the initial reaction occurs at the surface of the metal.
- (Equació 3.4)
-
La papallona TS per a la reacció de Barbier (Equació 3.5)
Although the mechanism has not been fully elaborated it is hypothesized that the organozinc intermediate is a metal-carbenoid. The intermediate is believed to be a three-centered "butterfly-type". This intermediate can be directed by substituents, such as alcohols, to deliver the cyclopropane on the same side of the molecule. Zinc-copper couple is commonly used to activate zinc.[18]
-
Els grups de direcció ajuden a la selectivitat de la reacció de Simmons-Smith (Equació 3.6)
Metilenació titani-zinc
[modifica]Organozinc compounds derived from methylene bromide or iodide can electrophilically add to carbonyl groups to form terminal alkenes.[21]
The reaction is mechanistically related to the Tebbe reaction and can be catalyzed by various Lewis acids (e.g. TiCl4 or Al2Me6).[22]
The reaction is used to introduce deuterium into molecules for isotopic labeling or as an alternative to the Wittig reaction.
Acoblament de Negishi
[modifica]This powerful carbon-carbon bond forming cross-coupling reactions combines an organic halide and an organozinc halide reagent in the presence of a nickel or palladium catalyst. The organic halide reactant can be alkenyl, aryl, allyl, or propargyl. Alkylzinc coupling with alkyl halides such as bromides and chlorides have also been reported with active catalysts such as Pd-PEPPSI precatalysts, which strongly resist beta-hydride elimination (a common occurrence with alkyl substituents).[23]
Either diorganic species or organozinc halides can be used as coupling partners during the transmetallation step in this reaction. Despite the low reactivity of organozinc reagents on organic electrophiles, these reagents are among the most powerful metal nucleophiles toward palladium.[24]
Alkylzinc species require the presence of at least a stoichiometric amount of halide ions in solution to form a "zincate" species of the form RZnX32−, before it can undergo transmetalation to the palladium centre.[25]
This behavior contrasts greatly with the case of aryl zinc species. A key step in the catalytic cycle is a transmetalation in which a zinc halide exchanges its organic substituent for another halogen with the metal center.
An elegant example of Negishi coupling is Furstner's synthesis of amphidinolide T1:[26]
-
Reacció d'acoblament creuat de Negishi en la síntesi total d'amfidinolida T1 (Equació 3.7)
Acoblament de Fukuyama
[modifica]Fukuyama coupling is a palladium-catalyzed reaction involving the coupling of an aryl, alkyl, allyl, or α,β- unsaturated thioester compound. This thioester compound can be coupled to a wide range of organozinc reagents in order to reveal the corresponding ketone product. This protocol is useful due to its sensitivity to functional groups such as ketone, acetate, aromatic halides, and even aldehydes. The chemoselectivity observed indicates ketone formation is more facile than oxidative addition of palladium into these other moieties.[27]
-
Esquema bàsic per a l'acoblament de Fukuyama de tioèsters (Equació 3.8)
A further example of this coupling method is the synthesis of (+)-biotin. In this case, the Fukuyama coupling takes place with the thiolactone:[28]
-
Síntesi total de (+)-biotina mitjançant l'acoblament de Fukuyama (Equació 3.9)
Reacció de Barbier
[modifica]The Barbier reaction involves nucleophilic addition of a carbanion equivalent to a carbonyl. The conversion is similar to the Grignard reaction. The organozinc reagent is generated via an oxidative addition into the alkyl halide. The reaction produces a primary, secondary, or tertiary alcohol via a 1,2-addition. The Barbier reaction is advantageous because it is a one-pot process: the organozinc reagent is generated in the presence of the carbonyl substrate. Organozinc reagents are also less water sensitive, thus this reaction can be conducted in water. Similar to the Grignard reaction, a Schlenk equilibrium applies, in which the more reactive dialkylzinc can be formed.[18]
-
Esquema bàsic de la reacció de Barbier (Equació 3.10)
The mechanism resembles the Grignard reaction, in which the metal alkoxide can be generated by a radical stepwise pathway, through single electron transfer, or concerted reaction pathway via a cyclic transition state. An example of this reaction is in Danishefsky's synthesis of cycloproparadicicol. By using the organozinc addition reaction conditions the other functionality of the dienone and the alkyne are tolerated:[29]
-
La síntesi total de ciclopropadiciciol de Samuel Danashefskey utilitza una reacció de Barbier en fase inicial per accedir a la clau intermèdia (Equació 3.11)
Acetilurs de zinc
[modifica]The formation of the zinc acetylide proceeds via the intermediacy of a dialkynyl zinc (functional group exchange). Catalytic processes have been developed such as Merck's ephedrine process.[30] Propargylic alcohols can be synthesized from zinc acetylides. These versatile intermediates can then be used for a wide range of chemical transformations such as cross-coupling reactions, hydrogenation, and pericyclic reactions.[31]
-
Síntesi d'alcohols propargílics de zinc (Equació 3.12)
In the absence of ligands, the reaction is slow and inefficient. In the presence of chiral ligands, the reaction is fast and gives high conversion. Ryoji Noyori determined that a monozinc-ligand complex is the active species.[32]
-
El monozinc és l'espècie més reactiva (Equació 3.13)
Diastereoselectivity for addition of organozinc reagents into aldehydes can be predicted by the following model by Noyori and David A. Evans:[33]
-
Conformador preferit per a l'addició d'aldehids d'organozinc (Equació 3.14)
- The α-stereocenter of the ligand dictates observed stereochemistry of the propargylic alcohols
- The steric effects between the aldehyde substituent and the ligand are less important but still dictate the favored conformation
Zinc-acetylides are used in the HIV-1 reverse transcriptase inhibitor Efavirenz as well as in Merck's ephedrine derivatives.[34]
-
Effavirenz i derivat de l'efedrina de Merck sintetitzats mitjançant acetílid de zinc (Equació 3.15)
Organozincats
[modifica]The first organozinc ate complex (organozincate) was reported in 1858 by James Alfred Wanklyn,[35] an assistant to Frankland and concerned the reaction of elemental sodium with diethylzinc:
- 2 Na + 3 ZnEt2 → 2 NaZnEt3 + Zn (Equació 4.1)
Organozinc compounds that are strongly Lewis acidic are vulnerable to nucleophilic attack by alkali metals, such as sodium, and thus form these 'ate compounds'. Two types of organozincates are recognized: tetraorganozincates ([R4Zn]M2), which are dianionic, and triorganozincates ([R3Zn]M), which are monoanionic. Their structures, which are determined by the ligands, have been extensively characterized.
Síntesi
[modifica]Tetraorganozincates such as [Me4Zn]Li2 can be formed by mixing Me2Zn and MeLi in a 1:2 molar ratio of the rectants. Another example synthetic route to forming spriocyclic organozincates is shown below:
-
Síntesi de tetraorganozincat espirocíclic (Equació 4.2)
Triorganozincates compounds are formed by treating a diorganozinc such as (Me3SiCH2)2Zn with an alkali metal (K), or an alkali earth metal (Ba, Sr, or Ca). One example is [(Me3SiCH2)3Zn]K.
Triethylzincate degrades to sodium hydridoethylzincate(II) as a result of beta-hydride elimination:[36]
- 2 NaZnEt3 → Na2Zn2H2Et4 + 2 C2H4 (Equació 4.3)
The product is an edge-shared bitetrahedral structure, with bridging hydride ligands.
Reaccions
[modifica]Tot i que s'estudien amb menys freqüència, els organozincats sovint tenen una reactivitat i selectivitat augmentades en comparació amb els compostos neutres de diorganozinc. Han estat útils en alquilacions estereoselectives de cetones i carbonils relacionats, reaccions d'obertura d'anell. Els ariltrimetilzincats participen en reaccions de formació de C-C mediades pel vanadi.
-
Una reacció organozincada útil (Equació 4.4)
Compostos d'organozinc(I)
[modifica]També es coneixen compostos d'organozinc de baixa valència que tenen un enllaç Zn-Zn. El primer compost d'aquest tipus, el decametildizincocè, es va informar l'any 2004.[37]
Notes
[modifica]- ↑ In this one-pot reaction bromobenzene is converted to phenyllithium by reaction with 4 equivalents of n-butyllithium, then transmetalation with zinc chloride forms diphenylzinc which continues to react in an asymmetric reaction first with the MIB ligand and then with 2-naphthylaldehyde to the alcohol. In this reaction formation of diphenylzinc is accompanied by that of lithium chloride, which unchecked, catalyses the reaction without MIB involvement to the racemic alcohol. The salt is effectively removed by chelation with tetraethylethylene diamine (TEEDA) resulting in an enantiomeric excess of 92%.
- ↑ In this example the arylzinc iodide continues to react with allyl bromide in a nucleophilic displacement
Referències
[modifica]- ↑ Knochel i Jones, 1999.
- ↑ Knochel et al., 2004.
- ↑ 3,0 3,1 3,2 3,3 3,4 Rappoport i Marek, 2006.
- ↑ Herrmann, 1998.
- ↑ 5,0 5,1 Frankland, 1849, p. 171.
- ↑ Elschenbroich, 2006.
- ↑ Bacsa et al., Darling, p. 11685-11687.
- ↑ Kim i Walsh, 2006, p. 4175-4178.
- ↑ Rieke, 1989, p. 1260-1264.
- ↑ Negishi, 2002, p. 34-40.
- ↑ Langer et al., Knochel, p. 8229-8243.
- ↑ Naka, 2010, p. 1700-1706.
- ↑ Knochel, 1997, p. 1496-1498.
- ↑ Markies et al., Spek, p. 1-13.
- ↑ Lu, Gu i Zakarian, 2013, p. 14552-14555.
- ↑ Krasovskiy et al., 2006, p. 6040-6044.
- ↑ Fürstner, 1989, p. 571-590.
- ↑ 18,0 18,1 18,2 18,3 Kurti i Czako, 2005.
- ↑ Vedejs i Duncan, 2000, p. 6073-6081.
- ↑ Kumwaijima, 1987, p. 8056.
- ↑ Takai et al., 1980, p. 1698-1702.
- ↑ Trost, Fleming i Schreiber, 1991, p. 749-751.
- ↑ Sase et al., Knochel, p. 7380-7382.
- ↑ Nicolaou, Bulger i Sarlah, 2005, p. 4442-4489.
- ↑ McCann et al., 2012, p. 7024-7027.
- ↑ Aïssa et al., 2003, p. 15512-15520.
- ↑ Tokuyama et al., 1998, p. 3189-3192.
- ↑ Shimizu i Seki, 2000, p. 5099-5101.
- ↑ Yang et al., Rosen, p. 7881-7889.
- ↑ Li et al., Reider, p. 1453-1458.
- ↑ Soai i Niwa, 1992, p. 833-856.
- ↑ Noyori i Kitamura, 1991, p. 49-69.
- ↑ Evans, 1988, p. 420-426.
- ↑ Thompson et al., 1995, p. 8937-8940.
- ↑ Wanklyn, 1858, p. 67-79.
- ↑ Lennartson, Håkansson i Jagner, 2007, p. 6678-6680.
- ↑ Schulz, 2010, p. 6416-6428.
Bibliografia
[modifica]- Aïssa, Christophe; Riveiros, Ricardo; Ragot, Jacques; Fürstner, Alois «Total Syntheses of Amphidinolide T1, T3, T4, and T5» (en anglès). Journal of the American Chemical Society, 125(50), 2003, pàg. 15512–15520. DOI: 10.1021/ja038216z. PMID: 14664598.
- Bacsa, John; Hanke, Felix; Hindley, Sarah; Odedra, Rajesh; Darling, George R.; Jones, Anthony C.; Steiner, Alexander «The Solid State Structures of Dimethylzinc and Diethylzinc» (en anglès). Angewandte Chemie International Edition, 50(49), 2011. DOI: 10.1002/anie.201105099. PMC: 3326375. PMID: 21919175.
- Elschenbroich, C. Organometallics (en anglès). Weinheim: Wiley-VCH, 2006. ISBN 978-3-527-29390-2.
- Evans, D. «Stereoselective organic reactions: Catalysts for carbonyl addition processes» (en anglès). Science, 240(4851), 1988. Bibcode: 1988Sci...240..420E. DOI: 10.1126/science.3358127. PMID: 3358127.
- Frankland, E. Liebigs Ann. Chem.. 71, 1849.
- Fürstner, Alois «Recent Advancements in the Reformatsky Reaction» (en anglès). Synthesis, 1989(8), 1989. DOI: 10.1055/s-1989-27326.
- Herrmann, W. A.. Synthetic Methods of Organometallic and Inorganic Chemistry (en anglès). Vol. 5. Copper, Silver, Gold, Zinc, Cadmium, and Mercury, 1998. ISBN 978-0-865-77662-3.
- Kim, Jeung Gon; Walsh, Patrick J. «From Aryl Bromides to Enantioenriched Benzylic Alcohols in a Single Flask: Catalytic Asymmetric Arylation of Aldehydes» (en anglès). Angewandte Chemie International Edition, 45(25), 2006. DOI: 10.1002/anie.200600741. PMID: 16721894.
- Knochel, P. Angel. Chem. Int. Ed. Engl. (en anglès). 36, 1997.
- Knochel, P.; Jones, P. Organozinc reagents – A Practical Approach (en anglès). Oxford: Oxford Medical Publications, 1999. ISBN 0-19-850121-8.
- Knochel, Paul; Millot, Nicolas; Rodriguez, Alain L.; Tucker, Charles E. Organic Reactions (en anglès), 2004. DOI 10.1002/0471264180.or058.02. ISBN 0471264180.
- Krasovskiy, Arkady; Malakhov, Vladimir; Gavryushin, Andrei; Knochel, Paul «Efficient Synthesis of Functionalized Organozinc Compounds by the Direct Insertion of Zinc into Organic Iodides and Bromides» (en anglès). Angewandte Chemie International Edition, 45(36), 2006. DOI: 10.1002/anie.200601450. PMID: 16900548.
- Kumwaijima, I. J. Am. Chem. Soc. (en anglès). 109, 1987.
- Kurti, L.; Czako, B. Strategic Applications of Named Reactions in Organic Synthesis. Burlington: Elsevier, 2005.
- Langer, Falk; Schwink, Lothar; Devasagayaraj, Arokiasamy; Chavant, Pierre-Yves; Knochel, Paul «Preparation of Functionalized Dialkylzincs via a Boron−Zinc Exchange. Reactivity and Catalytic Asymmetric Addition to Aldehydes» (en anglès). The Journal of Organic Chemistry, 61(23), 1996. DOI: 10.1021/jo961129n. ISSN: 0022-3263. PMID: 11667810.
- Lennartson, Anders; Håkansson, Mikael; Jagner, Susan «Facile Synthesis of Well-Defined Sodium Hydridoalkylzincates(II)» (en anglès). Angewandte Chemie International Edition, 46(35), 2007. DOI: 10.1002/anie.200701477. PMID: 17665387.
- Li, Z.; Upadhyay, V.; DeCamp, A. E.; DiMichele, L.; Reider, P. J. Synthesis (en anglès), 1999.
- Lu, Ping; Gu, Zhenhua; Zakarian, Armen «Total Synthesis of Maoecrystal V: Early-Stage C–H Functionalization and Lactone Assembly by Radical Cyclization» (en anglès). Journal of the American Chemical Society, 135(39), 2013. DOI: 10.1021/ja408231t. PMC: 4118676. PMID: 24047444.
- Markies, P.; Schat, Gerrit; Akkerman, Otto S.; Bickelhaupt, F.; Spek, Anthony L. «Complexation of diphenylzinc with simple ethers. Crystal structures of the complexes Ph2Zn·glyme and Ph2Zn·diglyme» (en anglès). J. Am. Chem. Soc., 430, 1992. DOI: 10.1016/0022-328X(92)80090-K.
- McCann, L. C.; Hunter, H. N.; Cyburne, J. A. C.; Organ, M. G «Higher-Order Zincates as Transmetalators in Alkyl-Alkyl Negishi Cross-Coupling» (en anglès). Angewandte Chemie International Edition, 51(28), 2012. DOI: 10.1002/anie.201203547. PMID: 22685029.
- Naka, H. New J. Chem. (en anglès). 34, 2010.
- Negishi, Ei-Ichi «A genealogy of Pd-catalyzed cross-coupling» (en anglès). J. Am. Chem. Soc., 653(1)-653(2), 2002. DOI: 10.1016/S0022-328X(02)01273-1.
- Nicolaou, K. C.; Bulger, Paul G.; Sarlah, David «Palladium-Catalyzed Cross-Coupling Reactions in Total Synthesis» (en anglès). Angewandte Chemie International Edition, 44(29), 2005. DOI: 10.1002/anie.200500368. PMID: 15991198.
- Noyori, Ryoji; Kitamura, Masato «Enantioselective Addition of Organometallic Reagents to Carbonyl Compounds: Chirality Transfer, Multiplication, and Amplification» (en anglès). Angewandte Chemie International Edition in English, 30, 1991. DOI: 10.1002/anie.199100491.
- Rappoport, Z.; Marek, I. The Chemistry of Organozinc Compounds (en anglès). Chichester, UK: John Wiley & Sons, 2006 (Patai Series: The Chemistry of Functional Groups). ISBN 0-470-09337-4.
- Rieke, R. D. «Preparation of Organometallic Compounds from Highly Reactive Metal Powders» (en anglès). Science, 246(4935), 1989. Bibcode: 1989Sci...246.1260R. DOI: 10.1126/science.246.4935.1260. PMID: 17832221.
- Sase, S.; Jaric, M.; Metzger, A.; Malakhov, V.; Knochel, P. J. Am. Chem. Soc. (en anglès). 73, 2008.
- Soai, Kenso; Niwa, Seiji «Enantioselective addition of organozinc reagents to aldehydes» (en anglès). Chemical Reviews, 92(5), 1992. DOI: 10.1021/cr00013a004.
- Schulz, Stephan «Low-Valent Organometallics-Synthesis, Reactivity, and Potential Applications» (en anglès). Chemistry: A European Journal, 16(22), 2010. DOI: 10.1002/chem.201000580. PMID: 20486240.
- Shimizu, Toshiaki; Seki, Masahiko «Facile synthesis of (+)-biotin via Fukuyama coupling reaction» (en anglès). Tetrahedron Letters, 41(26), 2000. DOI: 10.1016/S0040-4039(00)00781-4.
- Takai, Kazuhiko; Hotta, Yuji; Oshima, Koichiro; Nozaki, Hitosi «Wittig-type Reaction of Dimetallated Carbodianion Species as Produced by Zinc Reduction of gem-Polyhalogen Compounds in the Presence of Lewis Acids» (en anglès). Bulletin of the Chemical Society of Japan, 53(6), 1980. DOI: 10.1246/bcsj.53.1698.
- Thompson, A. S.; Corley, E. G.; Huntington, M. F.; Grabowski, E. J. J.. Tetrahedron Lett. (en anglès). 36, 1995.
- Tokuyama, Hidetoshi; Yokoshima, Satoshi; Yamashita, Tohru; Fukuyama, Tohru «A novel ketone synthesis by a palladium-catalyzed reaction of thiol esters and organozinc reagents» (en anglès). Tetrahedron Letters, 39(20), 1998. DOI: 10.1016/S0040-4039(98)00456-0.
- Trost, Barry; Fleming, Ian; Schreiber, Stuart. «Transformation of the Carbonyl Group into Nonhydroxylic Groups». A: Comprehensive Organic Synthesis (Volume 1: Additions to CX π-Bonds, Part 1) (en anglès). Nova York: Pergamon Press, 1991. DOI 10.1016/B978-0-08-052349-1.00020-2. ISBN 9780080405926.
- Vedejs, E.; Duncan, S. M. «A Synthesis of C(16),C(18)-Bis-epi-cytochalasin D via Reformatsky Cyclization» (en anglès). The Journal of Organic Chemistry, 65(19), 2000. DOI: 10.1021/jo000533q. PMID: 10987942.
- Wanklyn, J. A «Ueber einige neue Aethylverbindungen, welche Alkalimetalle enthalten» (en alemany). Liebigs Annalen, 108(67), 1858. DOI: 10.1002/jlac.18581080116.
- Yang, Zhi-Qiang; Geng, Xudong; Solit, David; Pratilas, Christine A.; Rosen, Neal; Danishefsky, Samuel J. «New Efficient Synthesis of Resorcinylic Macrolides via Ynolides: Establishment of Cycloproparadicicol as Synthetically Feasible Preclinical Anticancer Agent Based on Hsp90 as the Target» (en anglès). J. Am. Chem. Soc., 126(25), 2004. DOI: 10.1021/ja0484348. PMID: 15212536.
Enllaços externs
[modifica]- «Zinc in organic synthesis» (en anglès).
- «Organozinc Compounds produced by BASF Corporation» (en anglès).