Vés al contingut

Distribució de Marchenko-Pastur

De la Viquipèdia, l'enciclopèdia lliure
Infotaula distribució de probabilitatDistribució de Marchenko-Pastur
Tipusdistribució de probabilitat i concepte matemàtic Modifica el valor a Wikidata

En la teoria matemàtica de matrius aleatòries, la distribució de Marchenko-Pastur, o llei de Marchenko-Pastur, descriu el comportament asimptòtic de valors singulars de grans matrius aleatòries rectangulars. El teorema rep el nom dels matemàtics soviètics Vladimir Marchenko i Leonid Pastur que van demostrar aquest resultat el 1967.[1]

Si denota a matriu aleatòria les entrades de la qual són variables aleatòries independents distribuïdes de manera idèntica amb mitjana 0 i variància , deixar

i deixar ser els valors propis de (vistes com a variables aleatòries). Finalment, cal considerar la mesura aleatòria[2]

comptant el nombre de valors propis del subconjunt inclòs en .[3]

Funció de distribució acumulada

[modifica]

Utilitzant la mateixa notació, la funció de distribució acumulada és [4]

Referències

[modifica]